Multi-Class Protein Fold Recognition using Large Margin Logic based Divide and Conquer Learning

Huma Lodhi¹ Stephen Muggleton¹ Mike J E Sternberg²

¹Department of Computing, Imperial College London

²Centre for Bioinformatics, Imperial College London

28 June 2009

- Introduction
- Support Vector Inductive Logic Programming
- Decision List based Support Vector Inductive Logic Programming
- Experiments and Results
- Conclusion

Protein Fold Recognition: Multi-class Learning Problem

Alphabet {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V } Protein: A finite sequence of characters from alphabet of 20 amino acids

Protein Folding

FPTIPLSRLFQNAMLRAHRLHQLAFDTYEE FEEAYIPKEQKYSFLQAPQASLCFSESIPT PSNREQAQQKSNLQLLRISLLLIQSWLEPV GFLRSVFANSLVYGASDSDVYDLLKDLEEG IQTLMGRLEDGSPRTGQAFKQTYAKFDANS HNDDALLKNYGLLYCFRKDMDKVETFLRIV

QCRSVEGSCGF

Challenges

- Structured data
- Skewed class distribution

Huma Lodhi (IC)

Protein Fold Recognition

28 June 2009 3 / 19

Distinguishing Characteristics: Kernel Methods & Inductive Logic Programming

Inductive Logic Programming (ILP)

- Ease of incorporation of background knowledge
- Expressive language formalism

Kernel Methods (KMs)

- High generalization ability
- Strong theoretical foundation

Problem

Methodologies for regression estimation and multi-class pattern classification

- Handles arbitrary type of data
- Methodology for regression estimation
- Algorithms for multi-class pattern classification

Support Vector Inductive Logic Programming (SVILP): An Instance of Logic based Kernel Learning

 At the intersection of Support Vector Machines and Inductive Logic Programming

Learning with SVILP

- A set of rules *H* is obtained from an ILP system, where a first order rule, *h* ∈ *H*, can be viewed as a boolean function of the form, *h* : *D* → {0, 1}
- A subset $H \in \mathcal{H}$ is selected

Feature Map

The subset of rules defines a mapping ϕ

$$\phi: \boldsymbol{d} \to \left(\sqrt{\pi(h_1(\boldsymbol{d}))}, \sqrt{\pi(h_2(\boldsymbol{d}))}, \dots, \sqrt{\pi(h_t(\boldsymbol{d}))}\right)$$

A kernel function is constructed by using the selected set of rules

SVILP Kernel

$$k(d_i, d_j) = \langle \phi(d_i), \phi(d_j) \rangle = \sum_{l=1}^t \sqrt{\pi(h_l(d_l))} \sqrt{\pi(h_l(d_j))}$$

Huma Lodhi (IC)

Т

Construct Gaussian RBF kernels in ILP space

$$egin{aligned} &k_{\mathcal{RBF}}(d_i,d_j) = \expigg(rac{-\|(\phi(d_i)-\phi(d_j)\|^2}{2\sigma^2}igg) \ &|(\phi(d_i)-\phi(d_j)\| = \sqrt{k(d_i,d_i)-2k(d_i,d_j)+k(d_j,d_j)} \end{aligned}$$

• Learning is performed by using an SVM in conjunction with the SVILP kernel.

Learning with SVILP: Low Dimensional Embedding

• For each rule compute goodness of fit by using compression

$$C=rac{PT*(ps-(ng+c))}{ps}$$

ps = number of positive examples correctly deducible from the rule

ng = number of negative examples that satisfy the conditions of the rules

c =length of the rule

PT =total number of positive examples

• Select *k* rules with positive compression values.

SVILP Kernel

Protein domain 1alla

Relationally encoded features of protein domain

'd1alla_'.

dom_t(d1alla_).
len(d1alla_, 161). nb_alpha(d1alla_,7).
nb_beta(d1alla_,0). has_pro(d1alla_h1).
sec_struc(d1alla_, d1alla_h3).
unit_t(d1alla_h3).
sst(d1alla_h3,4,4,a,104,9,h,0.443,
3.003,116.199, [v,t,p,i,e,e,i,g,v]).
unit_hmom(d1alla_h2, hi)

Protein domain 2hbg

Relational encoded features of protein domain

'd2hbg__'.

```
      dom_t(d2hbg__).

      len(d2hbg__, 147). nb_alpha(d2hbg__,6).

      nb_beta(d2hbg__,0). has_pro(d2hbg__h5).

      sec_struc(d2hbg__, d2hbg__h2).

      unit_t(d2hbg__h2).

      sst(d2hbg__h2,3,3,blank,40,7,h,0.540,

      1.812, 213.564,

      [q,m,a,a,v,f,g]). ···
```

SVILP Kernel

fold(Globinlike,A)	\leftarrow
	adjacent(A,B,C,1,h,h), adjacent(A,C,D,2,h,h), coil(B,C,4).
	/*A domain is classified 1 (belongs to Fold 'Globinlike') if heli- ces B(at position 1) and C are adjacent, C (at position 2) and D are adjacent and length of loop connecting B and C is 4 */
fold(Globinlike,A)	\leftarrow
	adjacent(A,B,C,1,h,h), has pro(C).
	/*A domain is classified 1 if helices B(at position 1) and C are adjacent and C has proline.*/
fold('Globinlike',A)	\leftarrow
	adjacent(A,B,C,1,h,h), coil(B,C,4), nb_ α _interval(4=<(A=<8)).
	/*A domain is classified 1 if helices B (at position 1) and C are adjacent, number of α helices are in range [4,8] and length of loop connecting B and C is 4*/.

Feature Map and SVILP Kernel

$$\phi(d1alla_) = \phi(d1) = (1 * 1 1 * 1 1 * 1)^{T} = (1 1 1)^{T}$$

$$\phi(d2hbg_{}) = \phi(d2) = (1 * 1 0 * 1 1 * 1)^{T} = (1 0 1)^{T}$$

k(d1, d2) = k(d2, d1) = 2, k(d1, d1) = 3 and k(d2, d2) = 2

Multi-class Classification: Decision List based SVILP (DL_SVILP)

Require: A set of training examples $d_i \in D$ and $c_i \in \{1, 2, ..., r\}$ and a vector *index* that represents learned structure of the list.

for *j* = 1 to *r* − 1 do

p = index[j] /* Select a class p from r classes */

/* Formulate the binary class problem by assigning label '1' to examples of class *p* and '-1' to examples of remaining classes */ $f_i : D_i \rightarrow \{1, -1\}$ /* Induce a binary classification function f_i by applying SVILP to set D_i */

 $D_{i+1} = D_i \setminus D_p$ /* Reduce the size of set D_i by removing the examples belonging to class $p^*/$

end for

return f_i for $i = 1, \ldots, r-1$

< ロ > < 同 > < 回 > < 回 >

Multi-class Classification: Decision list-based SVILP (DL_SVILP)

- Begin at the root node
- Apply the classifier associated with the node to example d
- Travel down the edge labeled by the classifier's output
- If the edge is labeled positive output the class associated with the leaf. If the edge is labeled negative repeat steps 2 and 3 until the last positive edge is reached. Output the label given by the node.

Learning underlying Structure for DL_SVILP

- **Require:** Training set, $d_1, d_2, ..., d_n$, validation set, $d'_1, d'_2, ..., d'_s$, *r* classes and a logic based kernel learning algorithm (such as SVILP)
 - for *j* = 1 to *r* do
 - /* Formulate the binary class problem by assigning label '1' to examples of class j and '-1' to examples of remaining classes */
 - $/^{\star}$ Induce a binary classification function by applying SVILP to training data,

 $d_1, d_2, \dots, d_n * /$

- /* Apply the learned function to validation set, d_1', d_2', \ldots, d_s' */
- /* Measure performance of classifier by using expression */

$$S[j]' = W_P * P^- + W_N * N^+$$

where P = total number of positive example, N = total number of negative examples, $P^- =$ number of misclassified positive examples, $N^- =$ number of misclassified negative examples, $W_P = \frac{N}{P}$ and $W_N = 1$

index[j]' = j

end for

/* Sort list *S'* in ascending order and reorder list *index'* accordingly */ *S* = *sort*(*S'*) *index* = *reorder*(*index'*) return *index* and *S*

イロト イポト イヨト イヨト 二日

$$P_{j} = \# \text{examples in class } j$$

$$P = \sum_{j=1}^{j=k} P_{j} = \# \text{examples in } k \text{classes}$$

$$TP_{j} = \# \text{correctly classified examples in class } j$$

$$Accuracy_{j} = \frac{TP_{j}}{P_{j}}$$

$$Overall \ accuracy \ (OA) = \frac{\sum_{j=1}^{j=k} TP_{j}}{P}$$

Huma Lodhi (IC)

<mark>ট ▶ ৰ ≣ ▶ ≣ ৩</mark>৫৫ 28 June 2009 14 / 19

・ロト ・日下 ・ ヨト ・

- 381 protein domains
- 20 folds of SCOP categorized into 4 structural classes, namely α , β , $\alpha/\beta \alpha + \beta$
- SCOP folds:

1: DNA 3-helical, 2: EF hand-like, 3: Globin-like, 4: 4-Helical cytokines, 5: Lambda repressor, 6: Ig beta-sandwich, 7: Tryp ser proteases, 8: OB-fold, 9: SH3-like barrel, 10: Lipocalins, 11: α/β *TIM*-barrel, 12: Rossmann-fold, 13: P-loop, 14: Periplasmic II, 15: α/β -Hydrolases, 16: Ferredoxin-like, 17: Zincin-like, 18: SH2-like, 19: β -Grasp, and 20: Interleukin.

Experiments: Recognizing Protein Folds

Fold	#Exm	MC_ILP	DL_SVILP	MC_SVM
α				
1	30	$\textbf{93.3} \pm \textbf{4.6}$	66.7 ± 8.6	$\textbf{43.3} \pm \textbf{9.1}$
2	14	$\textbf{28.6} \pm \textbf{12.1}$	57.1 ± 13.2	14.3 ± 9.4
3	13	46.2 ± 13.8	53.9 ± 13.8	46.2 ± 13.8
4	10	10.0 ± 9.5	30.0 ± 14.5	0.0 ± 0.0
5	10	40.0 ± 15.5	40.0 ± 15.5	30.0 ± 14.5
OA		55.8 ± 5.7	54.6 ± 5.7	31.2 ± 5.3
β				
6	45	73.3 ± 6.6	$\textbf{88.9} \pm \textbf{4.7}$	68.9 ± 6.9
7	21	57.1 ± 10.8	90.5 ± 6.4	66.7 ± 10.3
8	20	0.0 ± 0.0	35.0 ± 10.7	25.0 ± 9.7
9	16	$\textbf{43.8} \pm \textbf{12.4}$	75.0 ± 10.8	$\textbf{68.8} \pm \textbf{12.0}$
10	14	64.3 ± 12.8	71.4 ± 12.1	71.4 ± 12.1
OA		52.6 ± 4.6	75.9 ± 4.0	61.2 ± 4.5

Table: 5-fold cross-validated accuracies for 20 SCOP folds.

Huma Lodhi (IC)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experiments: Recognizing Protein Folds

Table: 5-fold cross-validated accuracies for 20 SCOP folds.

Fold	#Exm	MC_ILP	DL_SVILP	MC_SVM
α/β				
11	55	52.7 ± 6.7	$\textbf{76.4} \pm \textbf{5.7}$	56.4 ± 6.7
12	21	52.4 ± 10.9	90.5 ± 6.4	$\textbf{28.6} \pm \textbf{9.7}$
13	14	$\textbf{28.6} \pm \textbf{12.1}$	50.0 ± 13.4	$\textbf{21.4} \pm \textbf{11.0}$
14	13	7.7 ± 7.4	$\textbf{38.5} \pm \textbf{13.5}$	$\textbf{0.0}\pm\textbf{0.0}$
15	12	0.0 ± 0.0	$\textbf{8.3}\pm\textbf{8.0}$	16.7 ± 10.8
OA		$\textbf{39.1} \pm \textbf{4.6}$	64.4 ± 4.5	$\textbf{36.5} \pm \textbf{5.0}$
$\alpha + \beta$				
16	26	$\textbf{53.9} \pm \textbf{9.8}$	69.2 ± 9.1	$\textbf{34.6} \pm \textbf{9.3}$
17	13	15.4 ± 10.0	53.9 ± 13.8	$\textbf{30.8} \pm \textbf{12.8}$
18	13	7.7 ± 7.4	53.8 ± 13.8	$\textbf{38.5} \pm \textbf{13.5}$
19	12	0.0 ± 0.0	25.0 ± 12.5	$\textbf{33.3} \pm \textbf{13.6}$
20	9	$\textbf{77.8} \pm \textbf{13.9}$	66.7 ± 15.7	$\textbf{22.2} \pm \textbf{13.9}$
OA		$\textbf{32.9} \pm \textbf{5.7}$	54.8 ± 5.6	$\textbf{32.9} \pm \textbf{5.6}$
OA		$\textbf{45.4} \pm \textbf{2.6}$	64.0 ± 2.5	$\textbf{42.3} \pm \textbf{2.5}$

イロト イヨト イヨト イヨ

Table: Accuracy \pm standard deviation for 45 protein folds.

Fold	MC_ILP	DL_SVILP
α	57.78 ± 5.21	$\textbf{62.22} \pm \textbf{5.11}$
β	33.64 ± 4.57	45.79 ± 4.82
α/β	56.45 ± 4.45	62.90 ± 4.33
$\alpha + \beta$	66.67 ± 5.41	72.62 ± 5.27
All	52.84 ± 2.48	60.25 ± 2.43

- Logic based multi-class classification method
- Accurate solutions to protein fold recognition probmen

4 A N