A Quick Tour of the VeriFast Program Verifier

Bart Jacobs*, Jan Smans, and Frank Piessens

Department of Computer Science, Leuven, Belgium
art.jacobs, jan.smans,frank.piessens}@cs.kuleuven.be
bart. jacobs, j frank.pi Qcs.kul b

Abstract. This paper describes the main features of VeriFast, a sound
and modular program verifier for C and Java. VeriFast takes as input a
number of source files annotated with method contracts written in sep-
aration logic, inductive data type and fixpoint definitions, lemma func-
tions and proof steps. The verifier checks that (1) the program does not
perform illegal operations such as dividing by zero or illegal memory ac-
cesses and (2) that the assumptions described in method contracts hold
in each execution.

Although VeriFast supports specifying and verifying deep data structure
properties, it provides an interactive verification experience as verifica-
tion times are consistently low and errors can be diagnosed using its
symbolic debugger. VeriFast and a large number of example programs
are available online at: http://www.cs.kuleuven.be/~bartj/verifast.

1 Introduction

To tame the problems caused by aliasing when reasoning about imperative pro-
grams, O’Hearn, Reynolds and Yang [1, 2] proposed a variant of Hoare logic [3]
called separation logic. Separation logic extends Hoare logic with new assertions
to describe the structure of the heap. These additional assertions allow for local
reasoning through the frame rule:

{r} ¢ {Q}
{P*R} C {Q =« R}

Informally, the frame rule states that to reason about the behavior of a command
C, it is safe to ignore memory locations not accessed by C' (here R).

To automate the ideas behind separation logic, Berdine et al. [4] proposed
an efficient verification algorithm based on symbolic execution and implemented
this algorithm for a small, imperative language in Smallfoot. Variants of this
algorithm were soon implemented in static analyzers (e.g. Space Invader [5]) and
in automatic (e.g. jStar [6]) and interactive program verifiers (e.g. Ynot [7]).

This paper describes the main features of VeriFast, a program verifier that
brings the ideas of Berdine et al. to (subsets of) C and Java. Contrary to Small-
foot, we focus more on fast verification, expressive power, and the ability to
diagnose errors easily than on automation. In the remainder of this paper, we
explain the core specification concepts by showing how one can specify and ver-
ify full functional correctness of a C implementation of a stack (Section 2), and
discuss our experience with our implementation (Section 3).

* Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

2 Building Blocks

In this section, we introduce the building blocks of the VeriFast approach:
method contracts written in separation logic, inductive data types, fixpoint func-
tions and lemma functions. We do so by specifying a C implementation of a stack.

2.1 Method Contracts

In VeriFast, developers can specify the behavior of a C function via a method
contract consisting of two assertions, a precondition and a postcondition. Both
assertions must be written in a form of separation logic. As an example, con-
sider the program of Figure 1. The function create_node creates a new node,
initializes its fields, and returns a pointer to the caller. As create_node can be
called at all times, its precondition (keyword requires) imposes no restriction
on callers. Its postcondition (keyword ensures) guarantees that the fields value
and next of the returned pointer are valid memory locations that respectively
hold the values v and nzt. In addition, the conjunct malloc_block_node(result)
guarantees that the return value is a pointer returned by malloc, that can be
passed to free! to deallocate sizeof (struct node) bytes of memory. Note that
all aforementioned conjuncts of the postcondition are separated by a separating
conjunction (denoted by), indicating that modification of one conjunct will not
affect the others.

In Figure 1 and the remainder of this paper, annotations are marked by a gray
background. In our implementation annotations must be placed inside special
comments that are ignored by the C compiler, but recognized by VeriFast.

struct node { int value; struct node * next; };

struct node * create_node(int v, struct node x nat)
requires emp;

ensures result—uvalue — v * result—next — nxt x malloc_block_node(result);
struct node * n := malloc(sizeof (struct node));
if(n = 0) abort();

n—uvalue := v; n—next := nat;
return n;

Fig. 1. The function create_node and its method contract.

! In C, only pointers returned by malloc should be passed to free.

2.2 Inductive Data Types

To allow developers to specify rich properties, VeriFast supports inductive data
types. For example, the first line of Figure 2 defines the well-known inductive
data type list: a list is either empty, nil, or the concatenation of a head element
and a tail. Note that the definition is generic in the type of the list elements (here
t). As we will soon show, inductively defined lists can be used in specifications.

inductive list<t> = nil | cons(t, list<t>);

predicate Iseg(struct node x f, struct node *t; list<int> vs) =
f=t?
vs = nil :
f # 0% f—value —7v * f—next —7n * malloc_block_node(f)*

Iseg(n,t, ?vs0) x vs = cons(v, vs0);
struct stack { struct node x head; };

predicate stack(struct stack x s;list<int> vs) =

s—head —7h * malloc_block_stack(s) lseg(h, 0, vs);

struct stack * create_stack() void push(struct stack = s,int x)
requires emp; requires stack(s, 7vs);
ensures stack(result, nil); ensures stack(s, cons(z, vs));
{
struct stack xs:= s—head := create_node(x, s—head);
malloc(sizeof (struct stack)); }
if (s = 0)abort();
s—head = 0;
return s;
}

Fig. 2. A small program illustrating inductive data types and predicates.

To describe recursive data structures and to allow for information hiding,
VeriFast supports separation logic predicates. A predicate is a named assertion.
For example, Figure 2 defines the predicates Iseg and stack. The former predicate
denotes a chain of valid nodes starting at f and ending in ¢ containing exactly
the values in the mathematical list vs. More specifically, if f equals ¢, then wvs
is the empty list; otherwise, f is a node with some value v (the question mark
preceding v indicates that f—wvalue can have an arbitrary value, which is called
v in the remainder of the assertion), there exists a sequence of node objects at
f’s next pointer with values vs0 and wvs is the concatenation of v and vs0. The
latter predicate states that s is a valid stack that holds the values vs.

The aforementioned predicates are used in Figure 2 to specify the behavior of
create_stack and push in an implementation-independent manner. More specif-
ically, create_stack can be called at all times, and guarantees that the returned
pointer refers to a valid, but empty stack. The precondition of push requires
that s is a pointer to a valid stack containing an arbitrary sequence of values
called vs. push’s postcondition ensures that s still is a valid stack with the value
x added at the top.

Both Iseg and stack are precise predicates. This means that their input pa-
rameters uniquely determine (1) the structure of the heap described by those
predicates and (2) the values of the output parameters. In VeriFast, input pa-
rameters are separated from output parameters by a semicolon. For example, f
and ¢ are input parameters of lseg, while vs is an output parameter. VeriFast
automatically tries to fold and unfold precise predicate instances whenever nec-
essary. For instance, the predicate instance stack(s, vs) is opened automatically
inside push such that s—head can be read. As shown in Figure 5, developers
can insert explicit fold (close) and unfold (open) proofs steps in the form of
ghost commands for non-precise predicates or when the automatic folding and
unfolding does not suffice.

2.3 Fixpoint Functions

In addition to inductive data types, VeriFast also supports fixpoint functions.
Just like predicates and inductive data types, fixpoint functions can only be
mentioned in specifications, not in the C code itself. Figure 3 contains 3 fixpoint
functions, that respectively compute the head, tail and length of an inductively
defined list. Note that the aforementioned fixpoints functions are generic in the
element type of the list.

fixpoint ¢ head<t>(list<t> 1) { fixpoint list<t> tail<t>(list<t> 1) {
switch(l) { switch(l) {
case nil : return default<t>; case nil : return default<t>;
case cons(hd, tl) : return hd; case cons(hd, tl) : return tl;
} }
} }

fixpoint int length<t>(list<t> 1) {
switch(l) {

case nil : return 0; case cons(hd, tl) : return 1+ length(tl);

Fig. 3. The fixpoint functions head, tail and length

The body of a fixpoint function must be a switch statement over one of the
fixpoint’s inductive arguments. To ensure soundness of the encoding of fixpoints,
VeriFast checks that fixpoints terminate. In particular, VeriFast enforces that
whenever a fixpoint g is called in the body of a fixpoint f that either g appears
before f in the program text or that the call decreases the size of an inductive
argument. For example, the call length(tl) in the body of length itself is allowed
because tl is a component of [(and hence smaller than).

As shown in Figure 4, pop’s function contract uses fixpoint functions: given a
non-empty stack with values vs, pop removes the top of the stack (i.e. the head of
vs) and returns this value to the caller. The function dispose deallocates a stack
and its constituent nodes. To dispose the nodes, dispose walks over the list of
nodes in a loop and deallocates them one by one. To reason about loops, VeriFast
requires developers to provide loop invariants (keyword invariant). Developers
may provide an optional loop variant, an integer-valued expression that decreases
in each iteration but never becomes negative, to enforce termination. In the
example, the length of the sequence of nodes that is not deallocated yet is the
loop variant.

void dispose(struct stack * s)

. 2, .
int pop(struct stack xs) requires stack(s, 7vs);

. . ensures emp;
requires stack(s, vs) * vs # nil; p;

ensures stack(s, tail(vs))x* struct node *n := s—head;

result = head(vs); while(n # 0)

{ invariant lseg(n, 0, ?vs0);
int r := s—head—value;
struct node *n := s—head;
s—head := n—next;
free(n);

return 7r;

decreases length(vs0);
{
struct node * tmp := n—next;
free(n); n = tmp;
}
free(s);
}

Fig. 4. The functions pop and dispose.

2.4 Lemma Functions

Lemma functions allow developers to prove properties of their inductive data
types, fixpoints and predicates, and allow them to use these properties when
reasoning about programs. A lemma is a function without side-effects marked
lemma. The contract of a lemma function corresponds to the property itself, its
body to the proof and a lemma function call corresponds to an application of the
property. VeriFast has two types of lemma functions, pure and spatial lemmas.

fixpoint list<t> append<t>(list<t> a,list<t> b) {
switch(a) {

case nil : return b; case cons(hd, tl) : return cons(hd, append(tl,b));

lemma void append_assoc<t>(list<t> a, list<t> b, list<t> c)
requires true; ensures append(append(a,b),c) = append(a, append (b, c));

{ switch(a) { case nil : ; case cons(hd, tl) : append_assoc(tl,b,c); } }

lemma void Iseg_add(struct node *a)
requires Ilseg(a, 7b, Tvsl) * b—next —7n * b — value —7vx
malloc_block_node(b) x lseg(n, 0, 7vs2);

ensures lseg(a, n, append(vsl, cons(v, nil))) * lseg(n, 0, vs2);

if (a = b){ open lseg(a,b,vs1); } else { lseg_add(a—next); }
open Iseg(n,0,vs2); close lseg(n,0,vs2); // get info from predicate body

}

int size(struct stack * s)

requires stack(s,?vs); ensures stack(s, vs) * result = length(vs);

int ¢ := 0; struct node *n := s—head; struct node * head :=n;
while(n # 0)
invariant lseg(head,n, ?vsl) * lseg(n, 0, Tvs2)x*
¢ = length(vsl) x vs = append(vsl, vs2);
decreases length(vs2);

{

c++; n = n—next;
Iseg_add(head); append_assoc(vsl, cons(head(vs2), nil), tail(vs2));

}

return c;

Fig. 5. The correctness of the C function size is established using the lemma functions
lseg_add and append_assoc.

A pure lemma is a function whose contract only contains pure assertions, and
whose body proves that the precondition implies the postcondition. append_assoc
shown in Figure 5 is a pure lemma that proves by induction on a’s size that
the fixpoint append is associative?. More specifically, the case nil of the switch
statement corresponds to the base case, while the case cons corresponds to the
inductive step. Note that switches over inductive data types do not require break
statements.

As opposed to pure lemmas, contracts of spatial lemmas can mention spatial
assertions such as predicates and points-to assertions. A spatial lemma with
precondition P and postcondition @) states that the program state described by
P is equivalent to the state described by Q. A spatial lemma call does not modify
the underlying values in the heap, but changes the symbolic representation of
the program state. lseg_add shown in Figure 5 is an example of a spatial lemma
that shows that a list segment from a to b can be extended provided b itself is
a valid node. The body of the C function size, which computes the number of
elements in a stack s, calls Iseg_add and append_assoc to prove that the loop
invariant is preserved by the loop’s body.

3 Implementation and Experience

The VeriFast program verifier, a large number of examples, and additional
documentation is available online at: http://www.cs.kuleuven.be/~bartj/
verifast. VeriFast has been used for teaching several courses on program ver-
ification at K.U.Leuven (Belgium) and ETH Zurich (Switserland). The docu-
mentation includes a tutorial, which describes the supported subset of C via a
number of examples and covers many features of VeriFast not discussed here
such as fractional permissions, higher-order predicates, overflow checking, func-
tion pointers, predicate families and concurrency.

VeriFast has been used in a number of case studies as shown in the table
below. These case studies do not consist of large code bases, but rather focus
on proving correctness of challenging specification and verification patterns (e.g.
composite).

program total # lines | # annotation lines | time taken (seconds)
chat server 242 114 0.08
linked list and iterator 332 194 0.09
composite 345 263 0.09
JavaCard applet 340 95 0.51
GameServer 383 148 0.23

To make it easier for developers to diagnose verification errors, VeriFast has an
IDE that supports symbolic debugging. That is, when verification fails, one can
inspect the symbolic states encountered during symbolic execution on the path
to the failure. A screenshot of the IDE is shown in Figure 6.

2 Our pure prover, Z3 [8], does not perform induction and therefore cannot derive
associativity of append solely based on its definition.

Eile Edit View Verify Help
= % SO NSV \o matching heap chunks: node_next

aplas-stack.c | preludeh]| prelude_core] listh] stdlibh] Locals
. R . | | currentThr
void dispose (struct stack* s)
stack (s, 2vs): n=n
. s=5
{ tmp=n
struct node* n = s->head:;
while(n != 0) S R
. Pval): |i‘ vsD=vs0
{
struct node* tmp = n;
free (tmp) ;
n = n_»nexc:
free(s);
[T— U o
Steps = | | Assumptions Heap chunks
Producing assertion {not (=n0)) Iseg(n0, 0, vs00)
Producing assertion {not (=n0))
Consuming chunk {retry) = {not (=n0))
Executing statement “~ | | (= vs0 (cons ({intbox) v) vs00)) < [s

Fig. 6. A screenshot of the VeriFast IDE. Developers can use the symbolic debugger in
the IDE to diagnose verification errors and inspect the symbolic state at each program
point. The box on the bottom left of the screen shows the symbolic states encountered
on the current path. The components of the selected state are shown in the boxes
on the bottom center (path condition), bottom right (symbolic heap), and top right
(symbolic store).

References

1. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. CSL, 2001.

2. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Symposium on Logic in Computer Science, 2002.

3. C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12, 1969.

4. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with
separation logic. In APLAS, 2005.

5. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. In POPL, 2009.

6. Dino Distefano and Matthew Parkinson. jStar: Towards practical verification for
Java. In OOPSLA, 2008.

7. Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the awkward squad. In ICFP, 2008.

8. Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In TACAS,
2008.

