
Wavelets with applications in signal and image

processing

Adhemar Bultheel

October 26, 2006



Contents

Table of contents i

1 Introduction 1

2 Signals 10
2.1 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Digital signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Analog signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Digital signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Analog signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Sampling theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Subsampling and upsampling of a discrete signal . . . . . . . . . . . . . . . . 22
2.6 The Heisenberg uncertainty principle . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Time-frequency plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Filters 32
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Inverse filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Bandpass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 QMF and PCF filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Filter banks 40
4.1 Analysis and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Perfect reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Lossless filter bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Polyphase matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Note on orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i



CONTENTS ii

5 Multiresolution 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Bases and frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Discrete versus continuous wavelet transform . . . . . . . . . . . . . . . . . . 55
5.4 Definition of a multiresolution analysis . . . . . . . . . . . . . . . . . . . . . 57
5.5 The scaling function or father function . . . . . . . . . . . . . . . . . . . . . 58
5.6 Solution of the dilation equation . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6.1 Solution by iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.2 Solution by Fourier analysis . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.3 Solution by recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6.4 Solution by the cascade algorithm . . . . . . . . . . . . . . . . . . . . 64

5.7 Properties of the scaling function . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 The wavelet or mother function . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9 Existence of the wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 A more informal approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Wavelet transform and filter banks 80
6.1 Wavelet expansion and filtering . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Filter bank interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Fast Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Wavelets by linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 The wavelet crime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 Biorthogonal wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Semi-orthogonal wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Multiwavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Approximating properties and wavelet design 97
7.1 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Design properties: overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Some well known wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4.1 Haar wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2 Shannon or sinc wavelet . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.3 Mexican hat function . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.4 Morlet wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.5 Meyer wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.6 Daubechies maxflat wavelets . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.7 Symlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.8 Coiflets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS iii

7.4.9 CDF or biorthogonal spline wavelets . . . . . . . . . . . . . . . . . . 105
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Chapter 1

Introduction

The basic ideas which will be explained in this introduction are presented graphically in
Figure 1.1. We have a signal consisting of 8 samples: x = (1, 3, 5, 7, 2,−1,−3,−2) (top left).
This can be written as 1 times a first 1× 1 block + 3 times a second 1× 1 block + 5 times a
third 1×1 block + · · · (top right). These eight 1×1 blocks are basis functions and the signal
is a linear combination of these 8 basis functions. Next we replace every 2 samples by their
average (middle left). To find the original signal, we also have to store the error, i.e., the
difference between the original signal and the averaged signal (middle right). The averaged
signal is denoted x(−1) and the difference signal is denoted y(−1). Thus x = x(−1) +y(−1). The
averaged signal x(−1) can be written as a linear combination of 2 × 1 blocks (bottom left)
while the difference signal y(−1) can be witten as a linear combination of the functions plotted
at the bottom right. Thus, the original signal can also be written as a linear combination of
the 8 functions given at the bottom (4 on the left and 4 on the right). Thus we have made
a change of basis from the 8 basis functions at the top right to the 4 + 4 basis functions at
the bottom.

Let us now work this out in a slightly more formal way. Consider a discrete signal that
consists of 8 sample values. In the previous example:

x = (x1, x2, . . . , x8) = (1, 3, 5, 7, 2,−1,−3,−2).

The space V0 of all such signals is in fact the space R
8, namely the space of all 8-tupples. Note

that this is a Euclidean space with inner product 〈X,Y 〉 = X tY . This space can be described
by the natural basis {ϕ0k}8k=1, where ϕ0k = ek is the kth column of the 8 × 8 unit matrix:
the columns of the matrix [E(0)] = I8. Thus, setting H (0) = I8, x = x(0) = [H(0)]tX(0).

Such a basis vector can be represented graphically as a 1 × 1 block at position k. The
values xk are the coordinates of x with respect to these basis vectors. We denote this
coordinate vector asX = X (0) = [1, 3, 5, 7, 2,−1,−3,−2]t. Note that the basis is orthonormal
since

[ϕ0p]
t[ϕ0q] = δp−q, p, q = 1, . . . , 8.

Now consider the subspace V−1 which is spanned by the basis functions

ϕ−1,k =
1√
2
(ϕ0,2k−1 + ϕ0,2k), k = 1, 2, 3, 4

1
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Figure 1.1: Averaging and differencing
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Figure 1.2: Signal and basis function

x

ϕ0,5

Defining the matrix

H(−1) =
1√
2




1 1
1 1

1 1
1 1




then it is clear that the basis vector ϕ−1,k is the kth column of the matrix [H (−1)]t. Obviously,
these basis functions are again orthonormal: [H (−1)][H(−1)]t = I4. Thus, we can easily find
the projection x(−1) of x onto the subspace V−1. It is given by x(−1) = [H(−1)]tX(−1) with
X(−1) = H(−1)X(0). Thus

X(−1) =
1√
2
[x1 + x2, x3 + x4, x5 + x6, x7 + x8]

t.

This projection gives a low resolution picture of the original signal because in the original
picture we could distinguish between function values that were 1 unit apart in the horizontal
direction, while in the new picture we have a resolution of 2 units in the horizontal direction.
If the original signal is plotted on a screen that can not distinguish between two adjacent
pixels in the horizontal direction, then Figure 1.3 is the best we can get as a picture of the
signal. It is a low resolution approximation of the original.

By this projection we loose some information. This is captured in the orthogonal com-
plement of V−1 in V0. We denote this space as W−1 = V0 	 V−1. This space W−1 is also of
dimension 4 and it is spanned by the basis vectors

ψ−1,k =
1√
2
(ϕ0,2k−1 − ϕ0,2k), k = 1, 2, 3, 4.

We collect these basis vectors in a matrix. So they are given as the columns of the matrix
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Figure 1.3: First projection and 1 basis function

ϕ−1,3

x(−1)

[G(−1)]t where

G(−1) =
1√
2




1 −1
1 −1

1 −1
1 −1


 .

Note that also this basis is orthonormal since [G(−1)][G(−1)]t = I4. We have now decomposed
our original signal x into an orthogonal direct sum x = x(−1) + y(−1) where x(−1) is the
projection of x onto V−1 as given above and y(−1) is the projection of x onto W−1. This
projection is given by y(−1) = [G(−1)]tY (−1) with Y (−1) = G(−1)X. This is depicted in Figure
1.4. The sum of the pictures 1.3 and 1.4 would give the Figure 1.2 back (up to a scaling

Figure 1.4: Projection on orthogonal complement and 1 basis function

ψ−1,3y(−1)

factor).
Mathematically, we have represented the original signal with repect to a new basis,

namely the columns of the matrix E(−1) = I8[T
(−1)]t where (T (−1))t = [(H(−1))t (G(−1))t]

describes the basis transformation. The new coordinates for this basis are given by
[
X(−1)

Y (−1)

]
=

[
H(−1)

G(−1)

]
X = T (−1)X.

Now suppose that the low resolution picture of Figure 1.3 is still too high for the screen
we have available, then we can repeat the same kind of operation to this picture. Thus, we



1. INTRODUCTION 5

define the subspace V−2 of V−1 which is spanned by the orthonormal basis vectors

ϕ−2,k =
1√
2
(ϕ−1,2k−1 + ϕ−1,2k), k = 1, 2.

and project x(−1) onto V−2. This gives x(−2) defined as x(−2) = [ϕ−2,1 ϕ−2,2]X
(−2) where

X(−2) is obtained by X (−2) = H(−2)X(−1) and where

H(−2) =
1√
2

[
1 1

1 1

]
.

If W−2 = V−1 	 V−2, then this orthogonal complement is spanned by the vectors which are
the columns of the matrix [G(−2)H(−1)]t with

G(−2) =
1√
2

[
1 −1

1 −1

]
.

and the projection of x(−1) onto W−2 is given by y(−2) = [G(−2)H(−1)]tY (−2) with Y (−2) =
G(−2)X(−1). This process can be repeated just one more time (since we run out of data). The

Figure 1.5: Second decomposition

ϕ−2,2

ψ−2,2

x(−2)

y(−2)

space V−3 is one-dimensional and is generated by the vector ϕ−3,1 = 1√
2
(ϕ−2,1 +ϕ−2,2), which

has all entries equal to 2−3/2. The coordinate is X (−3) = H(−3)X(−2) with H(−3) = 1√
2
[1 1].

This X(−3) is some kind of avarage of the signal because it equals 2−3/2(x1 + x2 + · · · +
x8). Similarly, W−3 = V−2 	 V−3 is one-dimensional and is spanned by the vector ψ−3,1 =
1√
2
(ϕ−2,1−ϕ−2,2) which is equal to 2−3/2 in its first 4 entries and equal to −2−3/2 in its last 4

entries. The coordinate of the projection y(−3) is Y (−3) = G(−3)X(−2) with G(−3) = 1√
2
[1 −1].

Finally we have decomposed the signal as

x = x(−3) + y(−3) + y(−2) + y(−1) = x(−2) + y(−2) + y(−1) = x(−1) + y(−1).
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For increasing k, x(k) gives better and better approximations of x, i.e., they are approxima-
tions of x at a higher and higher resolution level. We have obtained this decomposition by
successive orthogonal basis transformations. The successive bases we used for V0 are given
by

E(0) = [ ϕ0,1, ϕ0,2, ϕ0,3, ϕ0,4, ϕ0,5, ϕ0,6, ϕ0,7, ϕ0,8 ]
E(−1) = [ ϕ−1,1, ϕ−1,2, ϕ−1,3, ϕ−1,4| ψ−1,1, ψ−1,2, ψ−1,3, ψ−1,4 ]
E(−2) = [ ϕ−2,1, ϕ−2,2| ψ−2,1, ψ−2,2| ψ−1,1, ψ−1,2, ψ−1,3, ψ−1,4 ]
E(−3) = [ ϕ−3,1| ψ−3,1| ψ−2,1, ψ−2,2| ψ−1,1, ψ−1,2, ψ−1,3, ψ−1,4 ]

which are given by the columns of the matrices E(0) = I8,

E(−1) =
1√
2




1 0 0 0 1 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1




E(−2) =
1

2




1 0 1 0
√

2 0 0 0

1 0 1 0 −
√

2 0 0 0

1 0 − 1 0 0
√

2 0 0

1 0 −1 0 0 −
√

2 0 0

0 1 0 1 0 0
√

2 0

0 1 0 1 0 0 −
√

2 0

0 1 0 −1 0 0 0
√

2

0 1 0 − 1 0 0 0 −
√

2




E(−3) =
1

2
√

2




1 1
√

2 0 2 0 0 0

1 1
√

2 0 − 2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 − 2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 − 2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 − 2




The corresponding coordinates are given by

X(0) = X,

[
X(−1)

Y (−1)

]
,



X(−2)

Y (−2)

Y (−1)


 ,




X(−3)

Y (−3)

Y (−2)

Y (−1)


 .

Thus multiplying these vectors from the left with the respective basis matrices E (0), E(−1),
E(−2), E(−3), will all give the same signal x.



1. INTRODUCTION 7

In our example these coordinates are respectively




1
3
5
7
2
−1
−3
−2




;
1√
2




4
12
1
−5
−2
−2
3
−1




;
1

2




16
−4
−8
6

−2
√

2

−2
√

2

3
√

2

−
√

2




;
1

2
√

2




12
20

−8
√

2

6
√

2
−4
−4
6
−2




The last vector is called the wavelet transform of the signal and can be represented graphically
by plotting it as a block function. If the signal consists of many thousands of samples, then

Figure 1.6: Wavelet transform

we have the impression of a continuous signal and we get a picture like for example in
Figure 1.7 where we used 2048 samples. The signal consists of two sine waves. Note that
most of the coefficients in the wavelet transform are zero or very small.

This simple example illustrates several aspects of wavelet analysis which will be studied
in this text.

By representing the signal with respect to another basis, we are able to immediately find
low resolution approximations of the signal. For example if an image is considered as a two-
dimensional signal, it is often interesting to have a low resolution approximation, and only
afterwards add more and more detail to it. If this image is transmitted over the internet,
then a low resolution can reveal that it is not the image we want and the transmission can
be interupted. If it is the right image we can wait for all the details to be transmitted.

Technically such a representation of the signal is called a multiresolution representation.
The basis functions corresponding to low resolutions are in general relatively smooth

while the basis functions which catch the detail information are usually less smooth and
resemble a short wave (hence the name wavelet) with zero average. If we consider the signal
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Figure 1.7: Function and wavelet transform
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as depending on time (the index k), then the wavelet functions are “short” (they have a
compact support) which means that they are localized in time. If some coordinate is large
for a particular basis function, then we know where in the time-domain this large coefficient
will have its main influence.

The wavelet basis has also a characteristic that for low resolution the basis functions
oscillate less wildly than for high resolution basis functions. This expresses that the low
resolution wavelets contain lower frequencies while the high resolution basis functions contain
high frequencies. Thus a large coefficient for a high resolution basis function will have
influence on the high frequencies which are contained in that basis function while a large
coefficient for a low resolution basis function will have influence on the low frequencies which
are contained in that basis function. The wavelet basis is also localized in the frequency-
domain.

It was also clear that the orthogonality of the basis functions simplified the computation
of the coordinates considerably. Therefore we shall try to construct in general a wavelet
basis which is orthogonal if possible.

Two other aspects were used here: decimation and filtering. A linear filter applied to a
discrete signal will recombine the signal samples to give another signal. For example when
we replace xk by (Hx)k = x′k = 1√

2
(xk + xk+1), then we apply a (moving average) filter to

the signal. From our example, we have seen that this gives a lower resolution, i.e., it filters
out the higher frequencies and keeps only the lower frequencies. This is called a low-pass
filter. On the other hand (Gx)k = x′′k = 1√

2
(xk − xk+1) deletes the low frequencies and keeps
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the higher frequencies. It is a high-pass filter for the given signal, or, since this is recursively
applied, it is rather a band-pass filter, which selects a certain frequency band of the signal.

These filters would however transform the signal in a signal of as many samples as the
original signal. Thus a signal x of length N is transformed into 2 signals x′ and x′′ which have
both length N , which doubles the number of data. However, as we have seen in our example,
it is sufficient to keep only one in every two samples of x′ and x′′ and this is sufficient to find
the original signal back. This is called downsampling or decimation (by a factor 2).

This is a general principle: if we split the signal into m frequency bands by applying a
bank of m filters Hk, k = 1, . . . ,m, each one selecting the mth part of the whole bandwidth
of the signal, then it is sufficient to keep only one out of m samples in each of the results
Hkx.

The wavelets that appeared in our example above are called Haar wavelets. The coordi-
nates that were obtained in the final stage is again a signal of length 8 (just as the original
signal) and it is called the (Haar) wavelet transform of the original signal. We have described
the analysis phase, i.e., how the signal is decomposed in its wavelet basis. Reconstruction
of the original signal from its wavelet transform is called the synthesis phase. The synthesis
consists in undoing the operations from the analysis phase in reverse order. It is important
to notice that by our analysis nothing is lost (assuming exact arithmetic) and thus that our
signal will be perfectly reconstructed. This is an important property of a filter bank: the
perfect reconstruction property.

In the chapters to follow we shall describe all these ideas in a better mathematical1

framework and in more generality.

1A note about the mathematics: We will use mathematics, but proofs or defnitions may not always be
completely justified. For example, we often interchange the order of summation of infinite sums or take an
infinite power series and call it a function, without knowing that it actually converges etc. We took here an
“engineering” point of view where we try to give the main ideas without always being very rigorous. Let us
say once and for all that under “appropriate technical conditions”, the statements made hold true. By the
way, our infinite sums are in practice mostly sums with only a finite number of nonzero terms: filters will
have a finite impulse response, signals will be finite length, etc. because these are the only things that can
actually be computed.



Chapter 2

Signals

2.1 Fourier transforms

We will consider any real or complex function f of the real variable t (t refers to time) to be
an analog signal.

If f is real periodic with period T , then f(t) can be expanded in a Fourier series of the
form

f(t) = a0 +
∞∑

n=1

an cosnωf t+
∞∑

n=1

bn sinnωf t,

where ωf = 2π/T . This ωf is called the fundamental frequency (measured in radians per
second). The multiples nωf , n = 0, 1, 2, . . . of the fundamental frequency are called the
harmonic frequencies. The coefficients are given by (sines and cosines are orthogonal)

a0 =
1

T

∫ T/2

−T/2
f(t) dt

an =
2

T

∫ T/2

−T/2
f(t) cosnωf t dt, n ∈ N

bn =
2

T

∫ T/2

−T/2
f(t) sinnωf t dt, n ∈ N.

If a non-periodic signal f is given in an interval [−T/2, T/2], then we consider it to be
periodically extended (the given interval corresponds to one period). Thus, considering f(t)
in the interval t ∈ [−T/2, T/2] only, it can still be represented by a Fourier series of the
above form.

Note that, given only a finite piece of a signal (the interval [−T/2, T/2]), it becomes
impossible to distinguish frequencies which are less apart than

∆f =
ωf
2π

=
1

T

This ∆f is called the (frequency) resolution of the data.

10
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The sine/cosine series (called the trigonometric form of the Fourier series) can be rear-
ranged into the so called polar form

f(t) =
∞∑

n=0

An cos(nωf t+ ϕn), An =
√
a2
n + b2n, ϕn = tan−1(bn/an).

An is the magnitude or amplitude and ϕn is called the phase. Plotting An gives a number of
lines, called a (discrete) amplitude spectrum, plotting ϕn gives a (discrete) phase spectrum.
Both are line spectra since they consist of a discrete set of lines.

Since sine and cosine functions can be expressed in terms of complex exponentials, one
often uses the more compact notation (which is also valid for complex functions)

f(t) =
∞∑

n=−∞
cne

inωf t, cn =
1

T

∫ T/2

−T/2
e−inωf tf(t)dt.

Note that c0 = a0, ck = (ak − ibk)/2, k = 1, 2, . . . and c−k = ck if f is real. For a general
complex function f(t), ck and c−k are complex numbers which are not directly related.

The spectral content, i.e. which frequencies (= harmonics) are contained in the signal is
given by its Fourier series.

Aperiodic signals (ranging over the whole real axis R), can be considered as the limit of
finite signals (over an interval of length T ), but with T → ∞, hence ωf = 2π/T → 0 but
such that nωf → ω becomes a continuous variable. So we have to change the summation
over nωf into a continuous integral over ω and instead of a discrete spectrum of coefficients
cn, we have a continuous function F (ω). More precisely we get with appropriate scaling
factors

f(t) =
1√
2π

∫

R

F (ω)eiωtdω

and the Fourier transform

F (ω) =
1√
2π

∫

R

f(t)e−iωtdt

is called the (continuous) spectrum of f . Because T → ∞, the resolution 1/T → 0, which
means that, in principle, we know the signal with infinite precision.

For signals that depend on a discrete time variable, we can give analogous definitions for
the Fourier transforms. We give the results in the table below: The upper half corresponds
to functions with an infinite time support and the lower half to functions with a finite time

2.1. FOURIER TRANSFORMS
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support1.

digital analog

signal (fn) ∈ `2(Z) f(t) ∈ L2(R)

F.T. f̂(eiω) =
∑

n∈Z
fne

−inω ∈ L2(T) f̂(ω) = 1√
2π

∫∞
−∞ f(t)e−iωtdt ∈ L2(R)

I.F.T. fn = 1
2π

∫ π
−π f̂(eiω)einωdω f(t) = 1√

2π

∫∞
−∞ f̂(ω)eiωtdω

signal (fn)
N−1
n=0 ∈ C

N f(t) ∈ L2
T

F.T. f̂k = 1
N

∑N−1
n=0 fne

−ink 2π
N , k = 0, ..., N − 1 f̂k = 1

T

∫ T/2
−T/2 f(t)e−ikt

2π
T dt ∈ `2(Z)

I.F.T. fn =
∑N−1

k=0 f̂ke
ink 2π

N , n = 0, . . . , N − 1 f(t) =
∑

k∈Z
f̂ke

ikt 2π
T

Some of the notation will be explained below. We shall not always treat all the four cases
next to each other, but choose the setting that is the simplest to treat. Translation to the
other cases is then left as an exercise. The left lower case corresponds to the discrete Fourier
transform (DFT) and this is of course the most practical for computations. For example,
the modulus of the DFT of the signal given in Figure 1.7 is plotted in Figure 2.1. This figure

Figure 2.1: DFT of the signal in Figure 1.7
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shows that the signal can be written as a linear combination of essentially three complex
exponentials.

1It is common practice to denote the Fourier transform by a hat: f̂ = Ff . Because we use the hat with
another meaning, we do not always use this convention. Sometimes we use a capital to denote the Fourier
transform. For example H(eiω) =

∑
hkeikω. Note that H(z) is a function of z = eiω ∈ T, the unit circle of

the complex plane. It is sometimes more convenient to consider it as a function of ω ∈ [−π, π], so that in
this case we also use the notation H(ω) to mean H(ω) = H(eiω).
There are several variations possible for the definitions in the table. Sometimes they differ in the normalizing
factor 1/2π or 1/

√
2π etc., or sometimes the meaning of F.T. and I.F.T. is interchanged. The latter corre-

sponds to writing 1/z instead of z where z = eiω. The first is more common in the engineering literature
while the latter is more commonly used by mathematicians.

2.1. FOURIER TRANSFORMS
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2.2 The time domain

As we stated above, we consider a signal to be any (complex valued) function of time. In our
discussion above, the signal depended on a continuous time variable t. The spectrum was a
function depending on a discrete variable (in the periodic case) or a continuous variable (in
the non-periodic case).

In practice however, to make digital computations possible, a signal is sampled and in
that case, a signal is a time series, i.e., a function of a discrete time variable. Thus, the time
can range over a continuum or over a discrete set. In the first case we say that the signal is
an analog or a continuous-time signal, in the second case, it is called a digital or discrete-time
signal.

2.2.1 Digital signals

We shall first consider digital signals because they are somewhat easier to treat. Thus a signal
is a complex function of a discrete time variable, which we denote as fn or occasionally as
f(n). In other words, it is an infinite complex sequence.

In practice, signals are often real, but this can be embedded in a complex setting by
letting the real part of the complex signal be the real signal.

The time domain is the set of all possible signals.

` = {f = (fn) : fn ∈ C, n ∈ Z}

We define the operator D by
(Df)n = fn−1.

It causes a time delay in the signal. For that reason, engineers call D a delay operator.
Because it shifts the signal back one unit in time, it is also called a (backward) shift operator.

A (unit) pulse δ = (δn) is a signal which is zero everywhere, except at the moment n = 0
where it is 1: δ0 = 1 while δn = 0 for all n ∈ Z0. Note that the shifts of the unit pulse Dkδ
are zero everywhere, except at n = k where it is one. Thus we can decompose a signal with
respect to a set of basis functions which are just shifts of the unit pulse:

f =
∑

n

fn(Dnδ).

For mathematical reasons, we often restrict the function space of signals to classical
Lebesgue spaces such as

`p = `p(Z) =



f ∈ ` : ‖f‖p =

(
∑

n

|fn|p
)1/p

<∞



 , 0 < p <∞

and

`∞ = `∞(Z) =

{
f ∈ ` : ‖f‖∞ = sup

n
|fn| <∞

}
.

2.2. THE TIME DOMAIN
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For all p ≥ 1, `p is a Banach space, which means that it is a complete space with respect to
its norm ‖ · ‖p.

In particular, the case p = 2 is interesting because `2 is a Hilbert space, which means
that it is equiped with an inner product:

〈f, g〉`2(Z) =
∑

N

fngn.

For f ∈ `2, the norm squared ‖f‖22 = 〈f, f〉`2(Z) is called the energy of the signal.

If u ∈ `1 and h ∈ `∞, then we can define the convolution of the two signals by

h ∗ u = u ∗ h = f, fn =
∑

m

hmun−m =
∑

m

umhn−m.

For f ∈ `2, we can define the complex convolution of a signal with shifted versions of
itself, giving

rn =
∑

m

fmfn+m.

This defines a new signal r = (rn) which is called the autocorrelation function of the signal.
Note that r−n = rn, as follows immediately from the definition. A large value of |rn| means
that signal values which are n samples apart are highly correlated. For example, a signal
which is measured every day and which has an approximate periodicity of one week will give
a large value for r7. Note that r0 = ‖f‖2 is the energy of the signal f .

For digital signals, it is interesting to have a notation for the time-reversed signal. If
f = (fk), then we shall define the substar conjugate g = f∗ as the signal with values
gk = f−k, k ∈ Z. For example, the samples of the convolution signal f = h ∗ u can be
denoted as

fn = (h ∗ u)n = 〈[Dnh]∗, u〉 =
∑

m

hn−mum.

2.2.2 Analog signals

We can also consider signals which are depending on a continuous time variable. We suppose
it is the infinite real axis. The treatment is completely similar to the discrete time case; we
only have to replace discrete sums by continuous integrals. Usually, for digital computations,
a continuous signal is sampled, for example with a sampling period T . We call 1/T the
sampling frequency. The samples f(nT ) can be denoted as fn and this gives again a discrete
time signal.

Again, the time domain is the set of all possible signals, i.e. of all complex valued functions
defined on the real axis:

L = {f = f(t) : f(t) ∈ C, t ∈ R}.
We now define the delay operator D by

(Df)(t) = f(t− 1).

2.2. THE TIME DOMAIN
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As in the discrete time case, it causes a time delay in the signal. For discrete signals, the
time delay was only used for integer time intervals, so that only integer powers of D had to
be considered. Here, for continuous signals, we shall consider delays over an arbitrary real
time interval h, which is indicated by real powers of D, namely (Dhf)(t) = f(t− h).

An impulse is a Dirac delta function wich is a generalized function δ satisfying

∫

R

f(t)δ(t− t0)dt = f(t0), f ∈ L.

Most often the function spaces of signals are restricted to classical Lebesgue spaces such
as

Lp = Lp(R) =

{
f ∈ L : ‖f‖p =

(
1√
2π

∫

R

|f(t)|pdt
)1/p

<∞
}
, p ≥ 1

and

L∞ = L∞(R) =

{
f ∈ L : ‖f‖∞ = sup

t
|f(t)| <∞

}
.

For all p ≥ 1, Lp is a Banach space, which means that it is a complete space with respect to
its norm.

L2 is a Hilbert space equiped with an inner product2:

〈f, g〉L2(R) =
1√
2π

∫

R

f(t)g(t)dt.

When f ∈ L2 we say that ‖f‖2 = 〈f, f〉L2(R) is the energy of the signal.

The convolution of the signal u and the signal h is defined as3

(h ∗ u)(t) =
1√
2π

∫

R

h(τ)u(t− τ)dτ.

The autocorrelation function of a signal f is defined by

r(t) =
1√
2π

∫

R

f(τ)f(t+ τ)dτ.

It holds that r(−t) = r(t), t ∈ R.
For periodic signals, we take as standard interval [−π, π], and the time domain is the

space L2
2π of 2π-periodic signals. The treatment is as above, except that the inner product

is given by

〈f, g〉L2
2π

=
1

2π

∫ π

−π
f(t)g(t)dt.

2Note that we use the normalization factor 1/
√

2π.
3Again note the factor 1/

√
2π in this definition.

2.2. THE TIME DOMAIN
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2.3 The frequency domain

2.3.1 Digital signals

Working in the time domain is not always efficient, so it is common practice to associate
with a sequence some formal series, which is called its z-transform and which is defined by

Z : f = (fn) 7→ F (z) =
∑

n

fnz
−n.

A shift (delay) in the time domain is translated into a multiplication with z−1 in the z-
domain: If g = Df , then G(z) = z−1F (z).

Note that in general, the z-transform series need not converge. The series being only a
formal series, means that zn has to be interpreted as a “place holder”. However, if f ∈ `p,
the z-transform F does converge for z = eiω ∈ T where T represents the complex unit circle.
In fact it defines a function which is in the space

Lp = Lp(T) =

{
F : ‖F‖p =

(
1

2π

∫ π

−π
|F (eiω)|pdω

)1/p

<∞
}
.

This function F (z) for z = eiω ∈ T, is the Fourier transform of the signal f . The inverse
Fourier transform describes the signal f in terms of F .

fn =
1

2π

∫ π

−π
einωF (eiω)dω =

〈
z−n, F (z)

〉
L2(T)

.

The fn are the Fourier coefficients of the function F . Note that the z transform of a shifted
impulse is Dmδ is z−m. Thus the decomposition of the signal with respect to the basis
{Dnδ} in the time domain corresponds to the decomposition in the z-domain of the series
F with respect to the basis {z−n}. Setting z = eiω, the signal is transformed into the ω-
domain, which is called the frequency domain and ω is called a frequency. Because F (eiω)
is 2π-peridodic in ω, we consider the frequency domain to be the interval [−π, π]. Note the
reciprocity: a periodic signal has a discrete spectrum, while a discrete signal has a periodic
spectrum (Fourier transform). Since the Fourier transform F (eiω) = F(fn) ∈ L2(T) of
f = (fn) ∈ `2(Z), can also be considered as a 2π-periodic function of ω, we shall sometimes
denote F (eiω) as F(ω) ∈ L2

2π. Of course L2(T) and L2
2π are isomorphic.

For signals in `2(Z), the Fourier transform is in L2(T) [or L2
2π] and the Fourier transform

is an isometric isomorphism between these spaces, i.e. 〈f, g〉`2(Z) = 〈F,G〉L2(T) = 〈F,G〉L2
2π

where F (eiω) = F(ω) and G(eiω) = G(ω) are the Fourier transforms of f and g respectively.
The signal f and its Fourier transform F are called a Fourier transform pair.

A convolution of two signals in the time domain translates into an ordinary multiplication
of their z-transforms in the z-domain. If h ∈ `1 and u ∈ `∞, then the z-transform of h ∗ u is
given by H(z)U(z). This is the main reason why it is easier to work in the z-domain than
to work in the time domain.

The Fourier transform of the autocorrelation function r = (rn) of a signal f is given by
R(z) =

∑
n rnz

−n for z = eiω. This Fourier transform is called the power spectrum of the

2.3. THE FREQUENCY DOMAIN
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signal f . Obviously
R(z) = F (z)F∗(z), F∗(z) = F (1/z).

The transform F 7→ F∗ is called para-hermitian conjugation. It is easily checked that if
F = F(f), then F∗ = F(f∗). Thus the para-hermitian conjugate in the frequency domain
corresponds to a complex conjugate time reversal in the time domain. The para-hermitian
conjugate extends the definition of complex conjugate on the circle T to the whole complex
plane C. Indeed, it is also easy to check that for z ∈ T we have F∗(z) = F (z). This
observation implies that on T, the power spectrum equals

R(eiω) = |F (eiω)|2

which is obviously a nonnegative function. Therefore, it can be used as a weight function to
define a weighted L2 space with inner product

〈f, g〉R =
1

2π

∫ π

−π
f(eiω)g(eiω)R(eiω)dω.

The measure dµ(ω) = R(eiω)dω is called the spectral measure of the signal. Note that we
can now write in this weighted space

〈
zk, zl

〉
R

=
1

2π

∫ π

−π
ei(l−k)ωR(eiω)dω = rl−k.

Thus, the Gram matrix of this Hilbert space is given by

[〈
zk, zl

〉
R

]
k,l∈Z

= [rl−k]k,l∈Z

which is a Hermitian positive definite Toeplitz matrix. A Toeplitz matrix M is a matrix
whose entry mk,l at row k and column l depends only on the difference k− l. It has elements
which do not change along the main diagonal and its parallels.

The infinite Toeplitz matrix [rk−l] defines a Toeplitz operator

f = (fn) 7→
∑

l

rk−lfl.

Note that also the convolution of two signals can be written as a multiplication with a
Toeplitz matrix. Indeed, if h = f ∗ g, then

hn =
∑

k

fn−kgk =
∑

k

gn−kfk, n ∈ Z.

Thus, if we denote in bold face the infinite (column) vector containing the samples of a
signal, then we can write a convolution as

h = f ∗ g ⇔ h = Tfg, Tf = [· · · |Z−1f |f |Zf | · · ·]

2.3. THE FREQUENCY DOMAIN
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where Z is the matrix which represents the (down-)shift operator, i.e. with ones on the first
subdiagonal and zeros everywhere else.




...
h−1

h0

h1
...




=




. . . . . . . . .

· · · f2 f1 f0 f−1 · · ·
· · · f2 f1 f0 f−1 · · ·

. . . . . . . . .







...
g−1

g0

g1
...




(2.1)

A signal is called band-limited if its Fourier transform is only different from zero in a part
of the spectrum [−π, π]. Since the Fourier transform writes the signal as a linear combination
of the basis functions eikω, and because these functions are highly oscillating for large ω and
only slowly varying for small ω (the complex exponential represents cosines and sines), it is
clear that if a signal has a Fourier transform which is only nonzero for “small” ω, then it will
be a smooth function which is only slowly varying while a signal whose Fourier transform
lives in a high frequency band will have high frequencies and it will thus contain much detail
information.

2.3.2 Analog signals

The same reasoning can be followed for non-periodic analog signals, again replacing sums
by integrals. For example, the Fourier transform for f ∈ L2(R) is defined by

F (ω) =
1√
2π

∫

R

e−iωtf(t)dt =
〈
eiωt, f(t)

〉
L2(R)

,

while the inverse Fourier transform is given by the expansion

f(t) =
1√
2π

∫

R

eiωtF (ω)dω =
〈
e−iωt, F (ω)

〉
L2(R)

.

For square integrable signals, the Plancherel formula says that

‖f‖2 =
1√
2π

∫

R

|f(t)|2dt = ‖F‖2 =
1√
2π

∫

R

|F (ω)|2dω

while the Parseval equality gives4

〈f, g〉L2(R) =
1√
2π

∫

R

f(t)g(t)dt = 〈F,G〉L2(R) =
1√
2π

∫

R

F (ω)G(ω)dω.

The Fourier transform of a convolution h ∗ u is the product of the Fourier transforms5

F(h ∗ u) =
1√
2π

∫

R

e−iωt(h ∗ u)(t)dt = H(ω)U(ω)

4The Plancherel and Parseval equalities still hold without the factor 1/
√

2π in the definition of the inner
product of L2(R).

5Here the factor 1/
√

2π in the definition of the convolution is essential. Without this factor, the Fourier
transform of the convolution is the product of the Fourier transforms times

√
2π.

2.3. THE FREQUENCY DOMAIN
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where U and H are the Fourier transforms of u and h respectively.
The analog of the para-hermitian conjugare is now associated with a reflection in the real

axis: F∗(z) = F (z). The interpretation as a time reversal is not immediate, but we do have
that this extends the definition of complex conjugate on R to the whole complex plane C.
We have for example as before that the power spectrum R, which is the Fourier transform
of the autocorrelation function r(t) is given by

R(z) = F (z)F∗(z) which equals |F (z)|2 ≥ 0 for z ∈ R.

Thus we can again define a weighted L2 space with spectral weight dµ(ω) = |F (ω)|2dω. The
kernel function

k(t, τ) =
〈
eitω, eiτω

〉
L2(R)

=
1√
2π

∫

R

ei(τ−t)ωR(ω)dω = r(τ − t)

depends only on the difference of its arguments and is called a Toeplitz kernel. It is the
kernel of a Toeplitz integral operator defined by

f(t) 7→ 1√
2π

∫

R

r(t− τ)f(τ)dτ

For periodic signals f ∈ L2
2π, the Fourier transform is discrete and belongs to the space

`2(Z)

fk =
1

2π

∫ π

−π
e−iktf(t)dt =

〈
eikt, f

〉
L2

2π

.

The inverse transform gives the expansion (Fourier series)

f(t) =
∑

k∈Z

fke
ikt.

This is the mirror situation of a discrete signal with a periodic spectrum.

2.4 Sampling theorem

If a continuous signal f(t) is sampled to give the discrete signal f(nT ), then in general, it is
impossible to recover the original signal from these samples because we do not know how it
behaves in between two samples. See for example Figure 2.2.

However, if we know that the signal is band-limited, then it is possible to recover the
signal with a finite sampling rate. For example, if the signal is cos(2Nπt) and if we sample
this with a period T = 1/N , we get fn = cos(2nπ) = 1 for all n. If we do not know more
about the signal, we can not recover it because for example the constant function 1, will
give exactly the same samples. Thus sampling at the highest frequency represented in the
signal is not good enough (and a fortiori sampling at a slower rate). One has to sample at a
rate that is at least twice the highest frequency. In our example, this will give the samples
f2n = 1 and f2n+1 = −1. Given the fact that the highest possible frequency is 2N cycles,
such a sample sequence can only be generated by the original signal cos(2Nπt). A fortiori, if

2.4. SAMPLING THEOREM
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Figure 2.2: Sampling and reconstruction

Sampling

?

the signal is sampled at a higher frequency, it will be reconstructable from its samples. The
critical sampling frequency of twice the maximal frequency is called the Nyquist frequency:

ωs = 2ωm

where ωs is the Nyquist sampling frequency and ωm is the maximal frequency of the signal.
The sampling of a continuous signal can be caught in a formula as follows. Consider the

function δ to be an analog signal (defined for all t ∈ R) which represents the digital unit
pulse:

δ(t) =

{
1, t = 0
0, t 6= 0

Obviously, the signal δT defined by

δT (t) =
∑

n∈Z

δ(t− nT )

will be an analog signal which is zero everywhere, except at the points t = nT , n ∈ Z where
it is 1. This is called a (unit) pulse train.

Figure 2.3: Pulse train

δT

Then we can consider for a given function f defined on R (an analog signal), the function

fs(t) = f(t)δT (t).

which is still an analog signal, zero everywhere, except at t = nT where it takes the value of
the nth sample fn = f(nT ).

2.4. SAMPLING THEOREM
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Since δT is a periodic function (period T ), with Fourier coefficients cn = 1/T , we can
write the Fourier series expansion δT (t) = 1

T

∑
n e

inωst, where ωs = 2π/T is the sampling
frequency. Thus we have

fs(t) = δT (t)f(t) =
1

T

∑

n

f(t)einωst

so that its Fourier transform is

Fs(ω) =
1

T

∑

n

F (ω − nωs).

This shows that the spectrum Fs is a periodic repetition of the spectrum F , multiplied by
1/T (see Figure 2.4). The periodicity is defined by ωs. Recall that the spectrum F lives
in the interval [−ωm, ωm] since its highest frequency is ωm. Thus if ωs is too small, the
repeated spectra will overlap. This is called aliasing. It will not be possible to isolate the
spectrum F of the continuous signal from the specrum Fs of the sampled signal. Thus f
can not be recovered from the spectrum Fs, or equivalently from the sampled signal. If

Figure 2.4: Sampling theorem

|Fs(ω)|

|F (ω)|

ωs > 2ωm

|Fs(ω)|

|Fs(ω)|

ωs < 2ωm

ωs = 2ωm

ωs

2ωm

however ωs is large enough, i.e. if ωs > 2ωm, then the repetitions of the spectra F do not
overlap and thus it is possible to isolate F from Fs and thus it is possible to recover the

2.4. SAMPLING THEOREM
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signal f from the spectrum Fs, i.e. from the samples fn. Thus, if the sampling frequency is
high enough, we have to isolate F first from Fs. This is obtained by filtering out only the
frequencies |ω| < ωs/2. This is done by a low pass filter, also called anti-aliasing filter (see
next chapter). Mathematically, this means that (in the ideal case) we multiply Fs with a
function H(ω) that is equal to T in |ω| < ωs/2 and that is zero outside this interval. This

Figure 2.5: Anti-aliasing filter

|Fs(ω)|
anti-aliasing filter

−ωm ωm

selects the frequencies |ω| < ωm and kills all the frequencies that are larger. Thus F being
isolated from Fs, we can reconstruct f . The IFT of this filter H(ω) is (sin ωst

2
)/(ωst

2
) (see

next chapter or check it as an exercise). Since the multiplication in the frequency domain
corresponds to a convolution in the time domain, it should now be plausible that we have
the following sampling theorem. For the mathematics of its proof we refer to the literature.

Theorem 2.4.1 (Sampling theorem). Suppose the continuous signal f is bandlimited, say
low pass, which means that F (ω) is essentially nonzero in |ω| < ωm and it is zero everywhere
else: the spectrum F (ω) lives in the band |ω| < ωm.

If the continuous signal is sampled at a rate

1

T
=
ωs
2π
, with ωs > 2ωm,

then it is possible to recover the signal from its samples fn = f(nT ), n ∈ Z by the formula

f(t) =
∑

n∈Z

f(nT )
sinωm(t− nT )

ωm(t− nT )

Remark: Since an ideal low pass filter which changes from a nonzero value for |ω| < ωs/2
immediately to the value 0 for |ω| > ωs/2 can never be realized, one usually samples at a
slightly higher rate than the Nyquist frequency to avoid aliasing because the filtering will
not be ideal.

2.5 Subsampling and upsampling of a discrete signal

What has been said before about sampling of a continuous signal can be repeated with
appropriate modifications when we want to (sub)sample a discrete signal. This means that
for a given discrete signal f = (fn), we produce a subsampled signal g = (gn) where gn = fnM ,

2.5. SUBSAMPLING AND UPSAMPLING OF A DISCRETE SIGNAL
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n ∈ Z. Thus, we take every Mth sample of the original signal. The analysis parallels the
previous one.

First define the discrete unit pulse: δ = (δn), and the discrete pulse train δM =
∑

kDkMδ
which is a discrete signal where δMn is equal to 1 for n = kM , k ∈ Z and is zero for all other
indices. Define the subsampled signal f ′ by

f ′
n =

{
fn, n = 0,±M,±2M, . . .
0, otherwise

Then
f ′
n = δMn fn.

Finally define gn = f ′
nM = fnM , n ∈ Z.

f · · · f0, f1, . . . fM , fM+1, . . . f2M , f2M+1, . . . . . .
δM · · · 1, 0, . . . , 0 1, 0, . . . , 0 1, 0, . . . , 0 . . .
f ′ · · · f0, 0, . . . 0 fM , 0, . . . , 0 f2M , 0, . . . , 0 . . .
g · · · f0 = g0 fM = g1 f2M = g2 . . .

Since δM has period M , its Fourier transform is (FδM)k = 1/M , k = 0, . . . ,M − 1, and it
follows that δM can be expanded in its Fourier series

δMn =
1

M

M−1∑

k=0

ei
2π
M
nk.

(Check that indeed the right hand side is 1 for n ∈MZ and 0 otherwise.) Thus

f ′
n =

1

M

M−1∑

k=0

fne
i 2π

M
nk

with Fourier transform

F ′(eiω) =
1

M

M−1∑

k=0

F (ei(ω−
2π
M
k)).

Again we see that F ′(eiω) is the sum of M replicas of F (eiω). These replicas are rotated on
the unit circle and spaced 2π/M apart.

To go from f ′ to g, we have to compress the time axis by a factor M , which corresponds
in the z-domain by repacing z by z1/M . Indeed

G(z) =
∑

n

f ′
nMz

−n =
∑

k

f ′
kz

−k/M =
∑

k

f ′
k(z

1/M )k = F ′(z1/M ).

Thus with z = eiω, ω should be divided by M , so that

G(eiω) = F ′(ei
ω
M ) =

1

M

M−1∑

k=0

F (ei(
ω−2πk

M
)).

2.5. SUBSAMPLING AND UPSAMPLING OF A DISCRETE SIGNAL



2. SIGNALS 24

Thus compressing the time domain by a factor M corresponds to stretching the ω-domain
by a factor M . The subsampled signal g has a spectrum G that is the sum of M shifted
replicas of the spectrum F which is stretched by a factor M and these replicas are spaced
2π apart. Thus to avoid overlap (aliasing), the bandwidth of F should not be larger than
π/M , otherwise the replicas overlap, and the original signal can not be recovered from the
subsampled one.

On the other hand, if a signal is filtered such that only a subband of bandwidth π/M
remains, then this subband signal need not be stored at the original sampling rate because
by storing only every Mth sample, we will still be able to reconstruct the subband signal.

Thus if we split a signal into two halfband signals, then if the original signal is stored
with 10 000 samples, we should only keep 5 000 samples for each subband, giving the same
amount of numbers containing the same amount of information.

The inverse operation of subsampling is upsampling. Now the given signal f is streched
and the samples in between are interpolated with zeros. f → g i.e. gn = fn/M for n ∈ MZ

and gn = 0 otherwise.
In the z-domain, this corresponds to

G(z) = F (zM).

It is usual to denote a downsampling by M as (↓ M) and upsampling by M as (↑ M).
Note that (↑M)(↓M)f 6= f , but we do have (↓M)(↑M)f = f . The operations (↓M) and
(↑M) are conjugates in the sense that 〈(↓M)f, g〉 = 〈f, (↑M)g〉. The matrix representation
(w.r.t. the standard basis) for downsampling is the unit matrix in which we keep only every
Mth row, the matrix representation for upsampling is the unit matrix in which we keep only
every Mth column. They are each others transpose.

2.6 The Heisenberg uncertainty principle

As we said in the introduction, it is the purpose of a wavelet basis that it should be locallized
in the time domain as well as in the frequency domain. Thus ideally, a wavelet basis function
should have a compact support in the time domain while its Fourier transform should have
a compact support in the frequency domain. However, the famous Heisenberg uncertainty
principle says that it is impossible to have a signal with finite support on the time axis which
is at the same time band limited.

Consider the basis function eiω0t. This has a perfect localization in the frequency domain.
It contains exactly one frequency ω0 because its Fourier transform is

√
2πδ(ω − ω0). It is

zero everywhere, except for ω = ω0. In the time domain however, the complex exponential
represents a cosine and a sine which are essentially nonzero on the whole real axis.

On the other extreme, we can consider a delta function in the time domain: δ(t − t0).
This is perfectly localized in the time domain. But its Fourier transform is e−iωt0/

√
2π which

is essentially nonzero on the whole real ω-axis. This is not band-limited.
These are the two extremes: either we have perfect localization in the time domain,

but then the signal will contain all the frequencies, or we have perfect localization in the
frequency domain, but then, the signal will live on the whole real time-axis.

2.6. THE HEISENBERG UNCERTAINTY PRINCIPLE
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In general, let us define some measure for expressing the width of the support of a
function and of its Fourier transform. Let f be a signal and F its Fourier transform. Define
the weighted means in the time domain and in the frequency domains as (|f |2/‖f‖2 and
|F |2/‖F‖2, can be considered as probability density functions)

t0 =

∫
t|f(t)|2dt∫
|f(t)|2dt and ω0 =

∫
ω|F (ω)|2dω∫
|F (ω)|2dω .

We say that the signal f is concentrated at (t0, ω0) in the time-frequency domain. (We
assume that t0 and ω0 are finite.) The standard deviations s and S are then a measure for
the width of the distribution of the time-frequency distribution of f around (t0, ω0). These
s and S are given as the square roots of the variances

s2 =

∫
(t− t0)2|f(t)|2dt∫
|f(t)|2dt and S2 =

∫
(ω − ω0)

2|F (ω)|2dω∫
|F (ω)|2dω .

These define somehow the measure we need (think of the Gauss function f(t) = exp(− (t−t0)2
2σ2 )

whose Fourier transform is another such Gaussian and the above width measure is related
to the variance σ). Then the following theorem holds:

Theorem 2.6.1 (Heisenberg uncertainty principle). Let F be the Fourier transform of
f and let s2 and S2 be defined as above, then

s2S2 ≥ 1

4
.

Proof. The proof simplifies considerably when we assume a coordinate transformation such
that t0 = 0 and ω0 = 0. If s2 or S2 are infinite, nothing has to be proved. So assume that
‖tf(t)‖ and ‖ωF (ω)‖ are finite, which implies that for example limt→±∞ |tf(t)|2 = 0 and
thus certainly t|f(t)|2 → 0 for t → ±∞. Also f ′ ∈ L2(R). In that case, the proof goes
as follows. Let P be the operator Pf(t) = tf(t) and Q the operator Qf(t) = f ′(t), then
QP − PQ = I because

(QP − PQ)f(t) =
d

dt
(tf(t))− tdf(t)

dt
= f(t).

Therefore, we have

‖f‖2 = 〈f, (QP − PQ)f〉 = 〈f,QPf〉 − 〈f,PQf〉 .

Now by partial integration:

〈f,QPf〉 =

∫

R

f(t)
d

dt
[tf(t)]dt = t|f(t)|2

∣∣∣∣
∞

−∞
−
∫

R

tf ′(t)f(t)dt = −〈Qf,Pf〉

Since also 〈f,PQf〉 = 〈Pf,Qf〉, we get

‖f‖2 = −2Re 〈Qf,Pf〉 .

2.6. THE HEISENBERG UNCERTAINTY PRINCIPLE
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The Cauchy-Schwartz inequality gives

|Re 〈f,PQf〉 | ≤ ‖Pf‖ ‖Qf‖

and this leads to
‖Qf‖
‖f‖

‖Pf‖
‖f‖ ≥

1

2
.

Obviously s = ‖Pf‖/‖f‖ and by the isomorphism between the time domain and the Fourier
domain, recalling that differentiation in the time domain corresponds to multiplication with
iω in the Fourier domain, it should be clear that S = ‖Qf‖/‖f‖, and the theorem is
proved.

The Gaussian function is the only function for which equality holds in the Heisenberg un-
certainty principle. Indeed, one has equality when 〈Pf,Qf〉 is real and negative, thus when
Qf = −cPf with c some positive constant. The only solution of this differential equation is
a multiple of e−ct

2/2 with c > 0.

2.7 Time-frequency plane

In the time-frequency plane, it follows from the Heisenberg uncertainty principle that, setting
out the widths of a basis function and its Fourier transform, then wavelet basis functions
will essentially contribute to the signal in a rectangle. To catch high frequencies, we need a
small s, for low frequencies, we can use basis functions with a large s. The basis functions

Figure 2.6: Time-frequency plane

ω

tt

ωω

t
basis δ(t− tk)

t

ω

wavelet basisbasis eiωkt WFT basis

δ(t − tk) represent vertical lines (infinitely thin and infinitely high rectangles). The basis
functions eiωkt represent horizontal lines (infinitely small and infinitely long rectangles). The
wavelet basis will correspond to finite rectangles: narrow and high (thin rectangles) for high
frequencies and wide and small (fat rectangles) for low frequencies.

A first attempt to reach such an objective is given by the windowed Fourier transform
(WFT) or the short time Fourier transform (STFT). Here the basis functions eiωt are replaced
by windowed versions ψω,b(t) = g(t−b)eiωt, where g is a window (for example g(t) = exp(−t2),

2.7. TIME-FREQUENCY PLANE
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in which case the corresponding transform is called the Gabor transform). Thus the WFT
is a function of two variables:

Fgf = F (ω, b) =
1√
2π

∫

R

ψω,b(t)f(t)dt = 〈ψω,b, f〉L2(R) .

The inverse transform is derived from the inverse Fourier transform which gives

g(t− b)f(t) =
1√
2π

∫

R

F (ω, b)eiωtdω.

Multiplying with g(t− b) and integrating w.r.t. b over R gives the inverse WFT:

f(t) =
1

2π‖g‖2
∫ ∫

R2

F (ω, b)g(t− b)eiωtdωdb

Since in the WFT, the width of all the basis functions is given by the width of the window,

Figure 2.7: Gabor transform basis functions: sin(t)e−t
2

, cos(t)e−t
2
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which is constant, it is obvious that this basis will give equal rectangles for all time and
all frequencies, whereas the wavelet basis gave also rectangles of equal area but where the
scale changed logarithmically with time and frequency which is much more comform to the
physiology of human observation (e.g. hearing for audio signals or vision for images). This
corresponds to using a basis ψa,b(t) =

√
|a|ψ(a(t − b)). The continuous wavelet transform

(CWT) is (a, b ∈ R)

F (a, b) =
1√
Cψ

∫

R

ψa,b(t)f(t)dt

while the inverse wavelet transform is given by:

f(t) =
1√
Cψ

∫ ∫

R2

F (a, b)ψa,b(t)da db,

where it is supposed that the constant

Cψ = 2π

∫

R

|Ψ(ω)|2 dω|ω| ,

2.7. TIME-FREQUENCY PLANE
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is finite (Ψ(ω) is the Fourier transform of ψ(t)). Note that b refers to ‘time’ and a refers
to ‘scale’, so that the continuous wavelet transform is defined in (a part of) the time-scale
space; it is a time-scale representation of the signal.

For example the Morlet wavelet chooses a modulated Gaussian for ψ(t):

ψ(t) = e−iαte−t
2/2, α = π

√
2

ln 2
≈ 5.336.

It looks much like the figures given for the Gabor transform. The difference is that in
the Gabor transform, the support is constant and is only shifted by the parameter b. The
different frequencies were obtained by changing ω explicitly. This gives the same exponential
hull with different sine/cosines inside. Here, with Morlet wavelets, the parameter b has the
same function: shifting in the time domain, but the parameter a will now stretch and
compress the exponential hull in the figure above.

Both the WFT and the CWT are highly redundant in practical situations and therefore
it is sufficient to sample the a and b and use only discrete values for it, for example a = 2n

and b = 2−nk, giving ψnk(t) = 2n/2ψ(2nt − k). The wavelet transform is then a double
sequence w = (wn,k)n,k∈Z2 ∈ `2(Z2) and the inverse transform is a double series: f(t) =∑

n,k wnkψnk(t). This discrete version of the wavelet transform is the kind of transform we
shall study in greater detail.

2.8 Summary

We have several Hilbert spaces with several inner products:

L2(R) 〈f, g〉 =
1√
2π

∫

R

f(t)g(t)dt

`2(Z) 〈f, g〉 =
∑

k∈Z

fkgk

C
N 〈f, g〉 =

N−1∑

k=0

fkgk

L2
T 〈f, g〉 =

1

T

∫ T/2

−T/2
f(t)g(t)dt

L2(T) 〈f, g〉 =
1

2π

∫

T

f(z)g(z)dθ, z = eiθ

≡
L2

2π 〈f, g〉 =
1

2π

∫ π

−π
f(t)g(t)dt

2.8. SUMMARY
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We consider two kinds of convolutions:

In L2(R): g = h ∗ u ⇔ g(t) =
1√
2π

∫

R

h(τ)u(t− τ)dτ ⇔ G(ω) = H(ω)U(ω)

In `2(Z): g = h ∗ u ⇔ gn =
∑

k∈Z

hkun−k ⇔ G(eiω) = H(eiω)U(eiω)

We have several Fourier transforms:

F : L2(R)→ L2(R) F (ω) = 〈eω, f〉L2(R) f(t) = 〈et, F 〉L2(R) 〈f, g〉L2(R)

eω(t) = eiωt et(ω) = e−iωt =
ω ∈ R, t ∈ R ω ∈ R, t ∈ R 〈F,G〉L2(R)

F = Z : `2(Z)→ L2(T) F (z) = 〈ez, f〉`2(Z) f(n) = 〈en, F 〉L2(T) 〈f, g〉`2(Z)

ez(k) = zk en(z) = z−n =
z ∈ T, k ∈ Z z ∈ T, n ∈ Z 〈F,G〉L2(T)

or with F(ω) = F (eiω)
F : `2(Z)→ L2

2π F(ω) = 〈eω, f〉`2(Z) f(n) = 〈en,F〉L2
2π

〈f, g〉L2(R)

eω(k) = eikω en(ω) = e−inω =
ω ∈ [−π, π], k ∈ Z ω ∈ [−π, π], n ∈ Z 〈F,G〉L2

2π

F : C
N → C

N Fk = 〈ek, f〉CN fn = 〈en, F 〉CN 〈f, g〉
CN

ek(n) = 1
N
eikn

2π
N en(k) = e−ikn

2π
N =

k, n ∈ {0, . . . , N − 1} k, n ∈ {0, . . . , N − 1} N 〈F,G〉
CN

F : L2
T → `2(Z) Fk = 〈ek, f〉L2

T
f(t) = 〈et, F 〉`2(Z) 〈f, g〉L2

T

ek(t) = eikt
2π
T et(k) = e−ikt

2π
T =

k ∈ Z, t ∈ [−T
2
, T

2
] k ∈ Z, t ∈ [−T

2
, T

2
] 〈F,G〉`2(Z)

Note the factor N in the case C
N . We could avoid this when we would define the inner

product in C
N as 〈f, g〉 = 1√

N

∑N−1
k=0 f̄kgk.

2.9 Exercises

1. Prove that if f ∈ `2(Z) and h = f∗ (i.e., hk = f−k), then

H(z) = F (1/z) = F∗(z)

where H(z) = Z(h) and F (z) = Z(f) are the z-transforms of h and f respectively.

2. Prove that if f, g ∈ `2(Z), then

〈f, g〉`2(Z) = 〈F,G〉L2(T) = 〈F,G〉L2
2π

where F(ω) = F (eiω) = F(f) and G(ω) = G(eiω) = F(g) are the Fourier transforms of
f and g respectively.

2.9. EXERCISES
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3. If f, g ∈ `2(Z), prove that the z-transform of the convolution

hn = (f ∗ g)n =
∑

k

fkgn−k

is given by Z(h) = Z(f)Z(g).

4. If f, g ∈ L2
2π, prove that the Fourier transform of the convolution

h(t) = (f ∗ g)(t) =
1

2π

∫ π

−π
f(τ)g(t− τ)dτ

is given by F(h) = F(f)F(g).

5. Prove that the Fourier transform of the pulse train δT (t) =
∑

n∈Z
δ(t − nT ) is equal

to 1
T

∑
n e

intωs , ωs = 2π
T

. Then prove that the Fourier transform of the sampled signal
fs(t) = f(t)δT (t) is given by Fs(ω) = 1

T

∑
n F (ω − nωs) where F = F(f).

6. (Poisson formula) Let f ∈ L2(R) and suppose that

∑

n∈Z

f(t+ 2nπ)

converges to a continuous function s ∈ L2
2π. Then we have the Poisson summation

formula

s(t) =
∑

n∈Z

f(t+ 2nπ) =
1√
2π

∑

n∈Z

F (n)eint

where F = F(f) is the Fourier transform of f .
Hint: write the Fourier series for s ∈ L2

2π: s(t) =
∑

n Sne
int with Sn = 1

2π

∫ π
−π s(t)e

−intdt.

Use the fact that the Fourier transform of f(at) is given by a−1F (ω/a) when F (ω) is
the Fourier transform of f(t), to rewrite the Poisson formula in the form

∑

k∈Z

f(t+ k) =
√

2π
∑

k∈Z

F (2πk)ei2πkt.

7. (Sampling theorem) Suppose the sampling frequency for the signal h(t) is ωs = 2ωm =
2π/T , and H(ω) = 0 for |ω| > ωm. Show that H(ω) has the Fourier series expansion

H(ω) =
∑

k

hke
−ikωT , hk =

1

2ωm

∫ ωm

−ωm

H(ω)eikωTdω =

√
2π

2ωm
h(kT )

where h(t) = 1√
2π

∫
R
H(ω)eiωtdω. By replacing H(ω) by the above Fourier expansion,

prove that

h(t) =
∑

k

h(kT )
sinωm(t− kT )

ωm(t− kT )
.

2.9. EXERCISES
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8. Prove that
1

M

M−1∑

k=0

ei
2π
M
nk = 1 for n ∈MZ and 0 otherwise.

9. Prove that the Gaussian function is the only function for which an equality holds in
the Heisenberg uncertainty principle.

10. For the windowed Fourier transform we have

g(t− b)f(t) =
1√
2π

∫

R

F (ω, b)eiωtdω.

Why is it not possible to divide by g(t− b) to recover f(t)?

11. Prove that
1

N

N−1∑

k=0

e−ikl
2π
N = δNl

that is, it is equal to 0, except when l ∈ NZ, then the result is equal to 1.

12. Let f ∈ L2(R) have norm 1: ‖f‖L2(R) = 1. Define g by g(t) = f(2nt− k) for t ∈ R and
k an arbitrary real constant. Prove that ‖g‖L2(R) = 2−n/2, hence that h(t) = 2n/2g(t)
has norm 1.

13. Prove that the Heisenberg product sS is not changed by (1) a dilation: f(t) 7→
2j/2f(2jt), (2) a modulation: f(t) 7→ eiωtf(t), (3) a translation: f(t) 7→ f(t− s).

14. If ψa,b(t) = |a|1/2ψ(a(t − b)), prove that its Fourier transform is equal to Ψa,b(ω) =
|a|−1/2e−ibωΨ(ω/a) where Ψ(ω) is the Fourier transform of ψ(t).

2.9. EXERCISES



Chapter 3

Filters

3.1 Definitions

In discrete time one usually speaks of digital filters. We shall restrict ourselves to a treatment
in discrete time. The treatment of the continuous time case is completely analogous. We
leave it as an exercise.

A filter is an operator which maps a signal into another signal.
A filter is linear, if it acts as a linear operator i.e.

H(αf + βg) = αHf + βHg, f, g ∈ `; α, β ∈ C.

A filter H is called shift invariant or time invariant if it commutes with the shift operator:
DH = HD. This means that delaying the filtered signal is the same as filtering the delayed
signal.

All our filters will be assumed to be linear and time invariant.

The effect of a filter applied to an impulse δ is called its impulse response:

h = (hn) = Hδ.
The impulse response is also given by the filter coefficients.

The Fourier transform1 H(eiω) =
∑

n hne
−inω of the impulse response is the frequency

response of the filter. The frequency response is in general a complex function and has an
amplitude and a phase:

H(eiω) =
∑

n

hne
−inω = |H(eiω)| exp(iϕ(ω)).

For linear time invariant filters, we can write the filtering operation as a convolution with
its impulse response: if g = Hf , then

g = Hf = H(
∑

m

fmDmδ) =
∑

m

fmDmHδ =

(
∑

m

fmhn−m

)
= h ∗ f,

1recall that for digital signals, we often use the notation H(ω) = H(eiω) =
∑

n
hne−inω = F(hn). Note

H(ω + π) = H(−eiω).

32
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so that such a filter is completely characterized by its impulse response. It can be defined
as a linear combination of powers of the shift operator: H =

∑
m hmDm.

Note that if g = Hf , then, when fn = einω, we get

gn =
∑

k

hkfn−k =
∑

k

hke
i(n−k)ω = einωH(eiω).

Thus g = H(eiω)f . If H is linear and time invariant, then it will transform a sine (or cosine)
into a sine (or cosine) (with the same frequency). The functions eikω are the eigenfunctions
of the filter.

In the z-domain, the filtering operation corresponds to a multiplication:

G(z) = H(z)F (z) or F (z) −→ H(z) −→ G(z).

The filter can be seen as a system with input F and output G. Therefore H(z) is often
called the transfer function of the filter (assuming that the formal series H(z) =

∑
n hnz

−n

does indeed converge to a function).
Since the relation H ↔ h ↔ H is one-to-one we shall also speak of the filter H or the

filter h, in order not to complicate the notation.
In linear algebra notation, a filtering operation corresponds to a multiplication with a

Toeplitz matrix:
g = Thf ,

with

Th =




. . . . . . . . .

· · · h2 h1 h0 h−1 · · ·
· · · h2 h1 h0 h−1 · · ·

. . . . . . . . .




(see (2.1)). Note that also matrix Th ↔ h is one-to-one. Here, like in many other instances,
we shall have different ways to describe the same phenomenon:

1. in the time domain a filter is an operator H defining a convolution with the impulse
response;

2. in the z-domain a filter is a linear system with transfer function H;

3. and in linear algebra terms, a filter is a linear transformation described by a multipli-
cation with the Toeplitz matrix Th.

A filter is called causal if it does not produce any output before there has been any input.
Thus

sn = 0, ∀n < 0 ⇒ (Hs)n = 0, ∀n < 0.

A causal filter should have an impulse response with (Hδ)n = 0 for all n < 0. The Toeplitz
matrix of a causal filter is lower triangular.

3.1. DEFINITIONS
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A filter is called stable if it transforms a finite energy signal into a finite energy signal:

‖f‖2 <∞ ⇒ ‖Hf‖2 <∞.
Since we used the term energy, we are implicitly working in the 2-norm (i.e. in `2), however
this also holds for other norms. For example, if the signals are considered to belong to `∞,
then ‖f‖ <∞ means that for all n ∈ Z, |fn| < M for some positive M . Then if g = Hf , it
follows that

|gn| ≤
∑

k

|hk||fn−k| ≤M
∑

k

|hk|

and thus, the filter will be stable if and only if
∑

k |hk| <∞, thus if h ∈ `1. This is sometimes
called bounded-input bounded-output (BIBO) stability.

Thus for a stable and causal filter, the transfer function H(z) =
∑∞

n=0 hnz
−n represents a

function which is analytic in E = {z ∈ C : |z| > 1}. If we are working in `2, than H ∈ L2(T),
which means that it is square integrable on T (it belongs to the Hardy space H2(E)) or
equivalently,

∑∞
n=0 |hn|2 < ∞ or Th is a lower triangular bounded Toeplitz operator on

`2(Z).
A filter is called a finite impulse response (FIR) filter if its impulse response dies out after

a finite number of time steps: (Hδ)n = 0 for all n > N . If this is not the case, the filter is
called an infinite impulse response (IIR) filter.

Let a FIR filter be given by H(eiω) = |H(eiω)|ejϕ(ω). The filter is called linear phase if
the phase is linear in ω. Thus ϕ(ω) = −αω. It is called general linear phase if ϕ(ω) = αω+c
with c a constant. It can be shown that if the filter coefficients are given by h0, . . . , hN , then
the only nontrivial possibility is that α = N/2. It also implies that the filter coefficients are
symmetric or antisymmetric, i.e., hk = hN−k or hk = −hN−k.

Example 3.1.1. [Moving average filter] Let us look at a simple example: Suppose the
impulse response of the filter is h0 = 1/2, h1 = 1/2 and hm = 0 for all other m ∈ Z.
Thus H = (I + D)/2. Then Hs = f if fn = (sn + sn−1)/2, n ∈ Z. The filter replaces all
the samples by the average of the sample and its predecessor: it is a moving average filter.
Taking z-transforms, we have F (z) = H(z)S(z) where H(z) = (1 + z−1)/2. When s is the
vector of the samples of s, then we can write the filtering operation as a multiplication with
a bidiagonal Toeplitz matrix: f = Hs where H is the Toeplitz matrix

H =




. . . . . . . . .

0 1
2

1
2

0

0 1
2

1
2

0
. . . . . . . . .




The boxed element corresponds to the central element at position (0,0). This filter is some-
times called the Moving average or Haar filter. 3

3.2 Inverse filter

A filter with z-transform H(z) is invertible if H(z) 6= 0 for z ∈ T. The z-transform of the
inverse filter is then 1/H(z).

3.2. INVERSE FILTER
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The condition H(eiω) 6= 0 is necessary, because if we suppose that H(eiω0) = 0, then the
frequency ω0 is killed by the filter. Thus if Y (eiω) = H(eiω)X(eiω), and the input X contains
the frequency ω0, we shall not find this frequency in the output Y because H(eiω0) = 0, so
that it is impossible to recover the frequency ω0 in X from the output Y . The filter is not
invertible.

Note that if the filter is causal and FIR, then H(z) is a polynomial in z−1, but the inverse
of such a filter is in general an infinite series and hence, it will be an IIR filter.

Example 3.2.1. Consider the FIR filter H(z) = 1− β/z. Its inverse is given by

1

H(z)
=

1

1− β/z = 1 + βz−1 + β2z−2 + · · ·

which converges in E if |β| < 1. The inverse is an IIR filter. If |β| > 1, then the above IIR
causal filter is not stable, but we can use the expansion

1

H(z)
=

1

1− β/z = − z
β
− z2

β2
− z3

β3
− · · ·

which is a stable, but noncausal filter. 3

The observations of the previous example hold in general: A causal FIR filter

1. has no inverse if it has a zero on T

2. has a causal inverse if it has all its zeros in D (the open unit disk)

3. has an anticausal inverse if it has all its zeros in E (outside the closed unit disk).

It is clear that a causal filter for which H(z) is rational should have all its poles inside D.
If its inverse has also all its poles in D, i.e., if H(z) has all its zeros in D, then the filter is
called minimal phase2.

3.3 Bandpass filters

Consider a filter whose Fourier transform is equal to 1 for |ω| < π/2 and zero for |ω| > π/2.
This is an ideal low pass filter. The region [−π/2, π/2] where it is 1 is called the passband
and the region [−π,−π/2] ∪ [π/2, π] where it is zero is called the stopband. From Y (eiω) =
H(eiω)X(eiω), it is seen that all the frequencies of X in the passband are passed unaltered
to Y , while all the frequencies in the stopband are killed.

Such an ideal filter can never be realized in practice, but in theory, it corresponds to a
filter

H(ω) = H(eiω) =
∑

k

hke
−ikω =

{
1, 0 ≤ |ω| < π/2
0, π/2 ≤ |ω| < π.

2It can be shown that for a minimal phase filter, the range of the phase angle is minimal among all such
filters with the same amplitude response.

3.3. BANDPASS FILTERS
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Figure 3.1: Ideal low pass and high pass filter

−π 0 π

1

π0−π

1

Since

hk =
1

2π

∫ π

−π
H(ω)eikωdω =

1

2π

∫ π/2

−π/2
eikωdω =

1

kπ
sin

kπ

2
=

1

2
sinc

kπ

2

for k 6= 0 and h0 = 1/2, it follows that this ideal low pass filter has an impulse response that
is given by the samples of the sinc function.

hn =





1/2, n = 0
±1/(nπ), n odd
0, n even

so that

H(ω) = H(eiω) =
1

2
+
eiω + e−iω

π
− e3iω + e−3iω

3π
+
e5iω + e−5iω

5π
+ · · ·

Similarly, one can construct an ideal high pass filter G

G(ω) = G(eiω) =
∑

k

gke
−ikω =

{
0, 0 ≤ |ω| < π/2
1, π/2 ≤ |ω| < π.

It has an impulse response

gn =





1/2, n = 0
∓1/(nπ), n odd
0, n even

Thus

G(ω) = G(eiω) =
1

2
− eiω + e−iω

π
+
e3iω + e−3iω

3π
− e5iω + e−5iω

5π
+ · · ·

Note that G(ω) = G(eiω) = H(−eiω) = H(ei(ω+π)) = H(ω + π). These filters are “comple-
mentary” in the sense that H covers the lower half of the spectrum and G covers the upper
half of the spectrum without overlapping. Together they cover the whole spectrum, a fact
which is expressed by

|H(eiω)|2 + |G(eiω)|2 = 1 or |H(ω)|2 + |G(ω)|2 = 1.

Example 3.3.1. [Moving average filter] Let us reconsider the moving average filter

H(ω) = H(eiω) =
1

2
(1 + e−iω) =

eiω/2 + e−iω/2

2
e−iω/2 = cos

ω

2
e−iω/2.

3.3. BANDPASS FILTERS
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Thus amplitude and phase are given by

|H(ω)| = |H(eiω)| = cos
ω

2
, ϕ(ω) = −ω

2
.

From the amplitude plot, we see that this filter can be interpreted as an approximate low

Figure 3.2: Amplitude and phase of moving average and moving difference filters

|H(eiω)| = cos ω
2

|G(eiω)| = | sin ω
2
|

0

0.5

1

−π 0 π 0

0.5

1

−π 0 π

ϕH(ω) = −ω/2 ϕG(ω) = (π/2− ω/2) mod π

−π/2

0

π/2

−π 0 π
−π/2

0

π/2

−π 0 π

pass filter: The amplitude is near 1 for |ω| near zero while it is near zero for |ω| near π. 3

Example 3.3.2. [Moving difference filter] In complete analogy, one may consider the
moving difference filter with transfer function G(z) = 1

2
(1− z−1). Since

G(ω) = G(eiω) =
1

2
(1− e−iω) =

eiω/2 − e−iω/2
2

e−iω/2 = (sin
ω

2
) (ie−iω/2) = sin

ω

2
ei(

π
2
−ω

2
).

Thus |G(ω)| = |G(eiω)| = | sin ω
2
|. For obvious reasons, this G can be considered as an

approximate high pass filter. 3

An all pass filter H is a filter for which |H(eiω)| = 1 for all ω. It lets (amplitude of) all
the frequencies pass unreduced (although it may change the phase). If y = Hu and H is an
all pass filter, then |H(eiω)U(eiω)| = |U(eiω)| so that

‖y‖2 = ‖Y ‖2 =
1

2π

∫ π

−π
|Y (eiω)|2dω =

1

2π

∫ π

−π
|U(eiω)|2dω = ‖U‖2 = ‖u‖2.

An all pass filter does not change the energy.

3.3. BANDPASS FILTERS
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3.4 QMF and PCF filters

Two filters F and G are called quadrature mirror filters (QMF) if their frequency response
amplitudes |H(eiω)| and |G(eiω)| are mirror images to each other with respect to the middle
frequency π

2
(called the mirror frequency). See Figure 3.3. Simple examples are G(z) =

H(−z−1) (i.e. G(eiω) = H(ei(π−ω)) or G(ω) = H(π − ω)). Or more generally G(z) =
zNH(−z−1) or G(z) = zNH∗(−z) etc.

Figure 3.3: QMF filters

π/2

G

π0

H

−π −π/2

Two filters F and G are called power complementary filters (PCF) if

|H(ω)|2 + |G(ω)|2 ≡ |H(eiω)|2 + |G(eiω)|2 = constant. (3.1)

The ideal low pass and the ideal high pass filters are QMF and PCF. Also the Haar filters
or moving average and moving difference are QMF and PCF.

3.5 Exercises

1. If H(z) is the rational transfer function of a digital filter, show that the filter is stable
and causal when all the poles of H(z) are outside the unit disk (i.e., they are all in E).
Under what conditions will the inverse of this filter be causal and stable?

2. Prove that for an analog signal, an ideal low pass filter, i.e., a filter for which H(ω) = 1
for |ω| < ω0 and H(ω) = 0 for |ω| > ω0 is given by

h(t) =
2ω0√
2π

sinc(ω0t).

3. Prove that we have QMF filters if G(z) = H(−z−1) or G(z) = zNH(−z−1) or G(z) =
zNH∗(−z). Show that if gk = (−1)kh̄N−k, then we have QMF filters.

4. (linear phase filters) Assume that the real filter coefficients h0, . . . , hN of a FIR filter
H(z) satisfy hk = hN−k. Moreover assume that N is even. Show that the amplitude

3.4. QMF AND PCF FILTERS
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and phase are given by

|H(eiω)| = hN/2 + 2

N/2−1∑

k=0

hk cos
(N − 2k)ω

2
and ϕ(ω) = −N

2
ω.

Show that if hk = −hN−k, then amplitude and phase are given by

|H(eiω)| = 2

N/2−1∑

k=0

hk sin
(N − 2k)ω

2
and ϕ(ω) = −N

2
ω +

π

2
.

How about the case where N is odd?

3.5. EXERCISES



Chapter 4

Filter banks

4.1 Analysis and synthesis

Suppose we have a discrete or an analog signal s which is band limited with band width Ω.
We want to write the signal as the sum of M signals, each of which have a band width Ω/M .
In this way, a wide band signal can be split into M signals of a smaller band and transmitted
over a channel with smaller band width. The receiver can reconstruct the original signal.
In theory, one can compute the Fourier transform of the signal, cut this in M pieces and
backtransform. In practice this is obtained by applying M filters to the signal, each of these
filters generates one of the M signals with the limited band width. This is called an M
channel filter bank.

Figure 4.1: Five channel filter bank

M

INPUT

filter 1

filter 2

filter 3

filter 4

filter 5

M

M

M

M

We shall restrict our discussion to the case M = 2 for discrete signals (although most of
the discussion is true for analog signals as wel).

Suppose we have a discrete signal, then we can apply a low pass and a high pass filter
to it, which splits the signal in two parts: the part which contains the low frequencies,
which gives a low resolution idea of the signal and the other part, which contains the high
frequencies and this part gives the detail information.

40
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This is called a two-channel filter bank. It splits the frequency band in two subbands.

Figure 4.2: Two channel filter bank

LP

HP

↓ 2

↓ 2G̃∗

H̃∗

Since in the ideal situation, each of the two filters take half of the frequency band of the
original signal, it is possible to stretch the half bands again to the full bandwidth. This is
obtained by downsampling the signal. Let us illustrate this idea.

If s = (sn) is a given signal, then s′ =↓ s if s′n = s2n. Thus we delete the odd samples and
keep only the even ones. The arrow indicates that we decimate or subsample or downsample
the signal. In general one writes s′ = (↓M)s if s′n = snM , but since we shall only subsample
here by a factor of 2, we leave it out of the notation.

In the z-domain, this means that

s′ =↓ s ⇔ S ′(z2) =
S(z) + S(−z)

2
⇔ S ′(z) =

S(z1/2) + S(−z1/2)

2
.

In the frequency domain, this reads

S ′(eiω) =
S(eiω/2) + S(−eiω/2)

2

which clearly shows that if the bandwidth of S is π, then the bandwidth of S ′ is 2π.
For the high pass band π/2 ≤ |ω| < π, we have to shift the spectrum first to the low pass

band |ω| < π/2, which corresponds to adding π to ω (note that because of periodicity, we
have a wrap around here). This means that for the shifted spectrum the frequency response
is given by ∑

sne
−in(ω+π) =

∑
(−1)nsne

−inω

so that sampling at half the clock rate of this signal gives again the same formula as for the
low pass band.

Thus on the analysis side of a two-channel filter bank, we have the application of the two
filters H̃∗ and G̃∗ which are both followed by a decimation operation. We use the notation

H̃∗ to denote that the transfer function of this filter is H̃∗(z) =
∑

k h̃kz
k and similarly for

G̃∗. Observe that H̃∗(z) is the z-transform of the time reversed sequence h̃∗ where h̃ = (h̃k).
On the synthesis side of the filter bank one finds the mirror image of the analysis side.

First the signals are upsampled. This means that between every two samples a zero is
introduced. This is denoted as

s′ =↑ s ⇔ s′2n = sn and s′2n+1 = 0 ⇔ S ′(z) = S(z2).

4.1. ANALYSIS AND SYNTHESIS
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Figure 4.3: Analysis and synthesis
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LP↓

↓ ↑

↑
S
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H̃∗
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After the upsampling, some filters H and G are applied and the two resulting signals Y and
X are added. Ideally the synthesis side should undo the analysis computations such that
the resulting signal S̃ is again equal to the original S.

The operations of the filter bank can also be written in terms of (infinite) matrices.
Indeed, filtering by H̃∗ means multiplication with the infinite Toeplitz matrix with entries

the impulse response h̃∗ = (h̃−n), i.e., the Fourier coefficients of H̃∗. Downsampling means
that we skip every other row (the odd ones). Thus the operation in the upper branch of the
analysis part gives LP (z) as the result of multiplication with the adjoint of the matrix

H̃ =




. . .

· · · h̃5 h̃3 h̃1 h̃−1 · · ·
· · · h̃4 h̃2 h̃0 h̃−2 · · ·

· · · h̃3 h̃1 h̃−1 h̃−3 · · ·
. . .




(4.1)

A similar discussion holds for the lower branch. Thus the vector p of samples of LP (z) and
the vector q of samples of HP (z) are obtained from the samples s of S(z) as follows

[
p
q

]
=

[
H̃∗

G̃∗

]
s ≡ K̃∗s

On the synthesis side, the upsampling followed by filtering with H means that we multiply
with the Toeplitz matrix whose entries are the impulse response coefficients (i.e. the Fourier
coefficients of H(z)) and in which every other column is deleted (the odd ones). That is
the matrix H which is defined like H̃ but without the tildes. The matrix G can be defined
similarly for the other branch on the synthesis side. The samples s̃ of the result S̃(z) are
then computed from the samples of LP (z) and HP (z) by

s̃ = Hp + Gq = [H G]

[
p
q

]
≡ K

[
p
q

]
.

We shall have s̃ = s if
KK̃∗ = I. (4.2)

Before moving to the next section, we remark that the recursive application of a two
channel filter bank as in Figure 4.4 also leads to an M channel filter bank. If the 2-channel

4.1. ANALYSIS AND SYNTHESIS
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filter banks split in equal band widths, then the band widths of the end channels will not be
the same though.

Figure 4.4: Recursive 2 channel filter bank
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4.2 Perfect reconstruction

After the analysis of the signal, all kinds of operations can be done. For example, the signal
can be encoded, compressed and sent over a transmission channel. At the end, the receiver
will reconstruct the signal by synthesis.

Ideally, if the operations in between do not loose information, then one should hope that
the filters G̃∗, H̃∗, G and H are designed such that the synthesized signal equals the original
signal. This is called perfect reconstruction (PR) and the filter bank is then called a PR filter
bank. What are the conditions to be imposed on the filters to guarantee a PR property? In
terms of the matrices, we have already formulated the condition as (4.2). It is however not
so easy to derive from (4.2) conditions for the four filters involved.

Therefore we do the analysis in the z-domain. Let us write down the operations of the
analysis stage in the z-domain.

LP (z) =
H̃∗(z

1/2)S(z1/2) + H̃∗(−z1/2)S(−z1/2)

2

and

HP (z) =
G̃∗(z

1/2)S(z1/2) + G̃∗(−z1/2)S(−z1/2)

2
.

Now extend the notion of paraconjugate for matrices as follows,

A(z) =

[
a(z) b(z)
c(z) d(z)

]
7→ A∗(z) =

[
a∗(z) c∗(z)
b∗(z) d∗(z)

]
,
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thus we take the paraconjugate of the entries and the transpose of the matrix. Recall that
for a scalar function, the paraconjugate means f∗(z) = f(1/z). Then we can write

[
LP (z2)
HP (z2)

]
=

1

2
M̃∗(z)

t

[
S(z)
S(−z)

]
where M̃(z) =

[
H̃(z) H̃(−z)
G̃(z) G̃(−z)

]
.

This M̃(z) is called the modulation matrix of the analysis part.
On the synthesis side, we have

Y (z) = H(z)LP (z2) and X(z) = G(z)HP (z2).

Thus the reconstructed signal is

S̃(z) = T0(z)S(z) + T1(z)S(−z)

T0(z) =
1

2
[H(z)H̃∗(z) +G(z)G̃∗(z)]

T1(z) =
1

2
[H(z)H̃∗(−z) +G(z)G̃∗(−z)].

Thus

S̃(z) = [H(z) G(z)]

[
LP (z2)
HP (z2)

]
= [H(z) G(z)]

1

2
M̃∗(z)

t

[
S(z)
S(−z)

]

By symmetry, we also have

[
S̃(z)

S̃(−z)

]
= M(z)t

[
LP (z2)
HP (z2)

]
=

1

2
M(z)tM̃∗(z)

t

[
S(z)
S(−z)

]

where

M(z) =

[
H(z) H(−z)
G(z) G(−z)

]

is the modulation matrix on the synthesis side.
For PR we want S̃(z) = cz−n0S(z). The c is a constant. Usually, it is equal to 1, but

another constant would only represent a scaling, which of course does not loose information.
We shall take c = 1. The z−n0 represents a delay, which is only natural to allow because the
computations with the filters will need at least a few clock cycles. However, we shall shift the
filters such that n0 = 0 (we can always shift them back later). Indeed, if the filters are FIR
and causal, they should be polynomials in z−1. However, by multiplication with a power
of z, they become noncausal (Laurent polynomials containing powers of z and z−1). For
mathematical manipulation, this is the simplest formulation. When the filters are realized,
one takes the filter coefficients of the Laurent polynomials, but uses them as coefficients of
polynomials in z−1, thus they are implemented as causal filters and this causes the delay in
the filter bank. Thus, in conclusion, we impose the PR conditions by setting

M(z)tM̃∗(z)
t = 2I2 or M̃∗(z)M(z) = 2I2.
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4.3 Lossless filter bank

From the PR condition, it is seen that up to a shift and a scaling, M and M̃∗ should be
inverses of each other. Assume that the filters G and H are FIR, which means that they
are Laurent polynomials (in the causal case polynomials in z−1). Since the inverse of a
polynomial is not a polynomial, but gives rise to an IIR filter, M̃∗, being the inverse of a
polynomial matrix, will contain IIR filters G̃∗ and H̃∗.

To avoid this problem, there are several solutions. A popular one is to require that the
filter bank is lossless or paraunitary. This is expressed by the fact that the modulation
matrix is proportional to a lossless or paraunitary matrix. In general, a polynomial matrix
A(z) is called paraunitary if it satisfies A∗(z)A(z) = A(z)A∗(z) = I. We shall require that
M(z) is paraunitary up to a scaling

√
2, namely we assume that M∗(z)M(z) = 2I2.

For a paraunitary filter bank, we see that the PR condition becomes extremely simple,
because we can choose

M̃(z) = M(z)

and thus M̃∗(z) will contain FIR filters if M(z) consists of FIR filters. For computational
reasons, this is of course a most desirable situation. Note that it means that H̃(z) = H(z)
and G̃(z) = G(z).

That paraunitarity is a strong restriction can be illustrated as follows. The filters from
a paraunitary filter bank satisfy M(z)M∗(z) = 2I, i.e.

H∗(z)H(z) +H∗(−z)H(−z) = 2

G∗(z)G(z) +G∗(−z)G(−z) = 2

H∗(z)G(z) +H∗(−z)G(−z) = 0

Thus, if RH(z) = H∗(z)H(z) is the power spectrum of H, and if RG(z) = G∗(z)G(z) is the
power spectrum of G, and RHG(z) = H∗(z)G(z), then, the above conditions can be expressed
as

RH(z) +RH(−z) = 2

RG(z) +RG(−z) = 2

RHG(z) +RHG(−z) = 0

The first condition means
∑

n

rHn z
−n +

∑

n

rHn (−1)nz−n = 2
∑

n

rH2nz
−2n = 2

or rH0 = 1 and rH2n = 0. In other words,

rH2n ≡
∑

k

hkhk−2n = δn.

The impulse response and its even translates are orthonormal. This is called double shift
orthogonality. Similarly, the second condition gives a double shift orthogonality for (gk)

∑

k

gkgk−2n = δn.
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The third condition leads to ∑

k

hkgk−2n = 0. (4.3)

For n = 0 this expresses that the filters H and G are orthogonal. To satisfy the condition
(4.3) one often chooses gk = (−1)kh̄N−k with N some odd integer. This relation is called
alternating flip. For example, taking N = 3, we see that with this rule the inner product of
the sequences

· · · h̄−2 h̄−1 h̄0 h̄1 h̄2 h̄3 · · ·
· · · h̄5 −h̄4 h̄3 −h̄2 h̄1 −h̄0 · · ·

gives indeed zero. This means that G and H are QMF.
The previous relations can be easily expressed in terms of the matrices of Section 4.1:

H∗H = G∗G = I and H∗G = 0.

Note also that M∗(z)M(z) = 2I implies

H∗(z)H(z) +G∗(z)G(z) = 2,

so that G and H are PCF. By the alternating flip relation G(z) = −z−NH∗(−z), so that
they are also QMF.

4.4 Polyphase matrix

Our previous description of the filter bank in terms of the modulation matrix is somewhat
inefficient because it describes the analysis as applying filters H̃∗ and G̃∗ after which the
filtered signals are subsampled. Thus half of the work is thrown away. From the description
with the matrices H̃ and G̃ it became clear that this is not the way in which it is implemented.
A more appropriate description will be given by the polyphase matrix which describes the
same filter bank, but where (sub/up)sampling and filtering operations are interchanged,
which turns out to be more efficient.

If S(z) represents any signal, then

S(z) =
∑

n

snz
−n =

∑

n

s2nz
−2n + z−1

∑

n

s2n+1z
−2n = Se(z

2) + z−1So(z
2).

Note that

Se(z
2) =

1

2
[S(z) + S(−z)] and So(z

2) =
z

2
[S(z)− S(−z)].

The signal S is split into 2 parts Se and So because the signal in our filter bank has only 2
channels. This idea can be generalized to a filter bank withM channels. We restrict ourselves
to a 2 channel case. We shall now give a polyphase (2-phase in our case) representation of
the two-channel filter bank.

Our objective is to describe the filter bank by a block diagram like in Figure 4.5. It
should be clear that the signals on the left obtained immediately after downsampling in the
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Figure 4.5: Polyphase representation of filter bank

S

↓

↓

+

X

YLP

HPHP

LP ↑

S̃P

↑

P̃∗

z−1z

analysis part are Se(z) in the top branch and So(z) in the lower branch. Similarly, it can be
seen that the signals on the right obtained immediately after the application of P should be
S̃e(z) in the top branch and S̃o(z) in the lower branch.

Thus if S = S̃ for PR, then we should have P (z)P̃∗(z) = I.
What are these transformation matrices P (z) and P̃∗(z)?
Define the almost paraunitary matrix

T (z) =
1

2

[
1 1
z −z

]
, then T (z)T∗(z) =

1

2
I2.

Then for any S [
Se(z

2)
So(z

2)

]
= T (z)

[
S(z)
S(−z)

]
.

Note that

T (z)−1 =

[
1 z−1

1 −z−1

]
= 2T∗(z).

Comparing

[
S̃(z)

S̃(−z)

]
= M(z)t

[
LP (z2)
HP (z2)

]
and

[
S̃e(z

2)

S̃o(z
2)

]
= P (z2)

[
LP (z2)
HP (z2)

]

it follows by multiplying the first relation by T (z) from the left and comparing with the
second one that

P (z2) = T (z)M(z)t,

whence

P (z) =

[
He(z) Ge(z)
Ho(z) Go(z)

]
.

This P (z) is called the polyphase matrix for the filters H and G.
Similarly, from

[
LP (z2)
HP (z2)

]
=

1

2
M̃∗(z)

t

[
S(z)
S(−z)

]
and

[
LP (z2)
HP (z2)

]
= P̃∗(z

2)

[
Se(z

2)
So(z

2)

]
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it follows by using

1

2
M̃∗(z)

t =
1

2
M̃∗(z)

t[2T∗(z)T (z)] = [T (z)M̃(z)t]∗T (z),

that
P̃∗(z

2) = M̃∗(z)
tT∗(z) = [T (z)M̃(z)t]∗.

so that the polyphase matrix for the analyis side is P̃ (z2) = T (z)M̃(z)t with

P̃ (z) =

[
H̃e(z) G̃e(z)

H̃o(z) G̃o(z)

]
.

In this notation, the perfect reconstruction condition M̃∗(z)M(z) = 2I2 becomes the
condition P (z)P̃∗(z) = I.

In the paraunitary case however where M = M̃ , this becomes

P (z) = P̃ (z)

and the PR condition is just P (z)P∗(z) = I which is obviously satisfied if P is a paraunitary
matrix.

From this condition, it is seen that the alternating flip is the way to relate H and G in
the paraunitary case. If P is paraunitary and contains Laurent polynomials, then its inverse,
which is P−1 = P∗, should also contain Laurent polynomials. Because detP−1 = 1/ detP ,
it follows from Cramer’s rule for the inversion of a 2 by 2 matrix that detP (z) should be a
monomial, thus detP (z) = cz−m where c is a constant that can only be unimodular: |c| = 1.
Let us assume without loss of generality that c = −1. By P−1 = P∗, we have

−zm
[

Go(z) −Ge(z)
−Ho(z) He(z)

]
=

[
He∗(z) Ho∗(z)
Ge∗(z) Go∗(z)

]
.

Thus

G(z) = Ge(z
2) + z−1Go(z

2)

= −z−2m[−Ho∗(z
2) + z−1He∗(z

2)]

= −z−(2m+1)H∗(−z).

This is precisely the alternating flip relation. Note that this implies the previously derived
relation H(z) = −z−(2m+1)G∗(−z).

Why is the polyphase implementation of the filter bank more interesting than the original
one? This is a matter of efficiency. In the analysis phase, the filters H∗ and G∗ are applied to
the given signal, and the two subbands are computed. Then both are subsampled. Thus half
the work is thrown away. In the polyphase implementation, the signal is split into its even
and its odd part, that is, the subsampling is done before the filters are applied, which gives
a reduction in computation. The downsampling is moved from after the filters to before the
filters. On the synthesis side, a symmetric image of this interchange is in order.
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4.5 Note on orthogonality

The PR condition can be expressed in different ways:

Polyphase matrix condition P (z)P̃∗(z) = I

modulation matrix condition M(z)M̃∗(z) = 2I

matrix K condition KK̃∗ = I.

For a paraunitary filter bank we have

Polyphase matrix is paraunitary P (z)P∗(z) = I
modulation matrix is paraunitary up to factor 2 M(z)M∗(z) = 2I
matrix K is unitary KK∗ = I.

Thus by choosing

P̃ (z) = P (z) ⇔ M̃(z) = M(z) ⇔ K̃ = K

we satisfy the PR condition

P (z)P̃∗(z) = I ⇔ M̃∗(z)M(z) = 2I ⇔ KK̃∗ = I.

The condition KK∗ = I means that we have the double shift orthogonalities

H∗H = I :
∑

h̄nhn−2k = δk (4.4)

H∗G = 0 :
∑

h̄ngn−2k = 0 (4.5)

G∗G = I :
∑

ḡngn−2k = δk. (4.6)

The condition (4.5) is satisfied by choosing alternating flips relating G and H: gn =
(−1)nh̄N−n with N odd. This is equivalent with G(z) = −zNH∗(−z): so that G and H
are QMF. The condition (4.6) is then automatically satisfied if condition (4.4) holds: h
should be orthogonal to its even shifts (double shift orthogonatyl).

In terms of the H and G from the modulation matrix, condition (4.4) translates into

H(z)H∗(z) +H(−z)H∗(−z) = 2 or |H(z)|2 + |H(−z)|2 = 2, z ∈ T.

In terms of He and Ho of the polyphase formulation, it reads

He(z)He∗(z) +Ho(−z)Ho∗(−z) = 1 or |He(z)|2 + |Ho(−z)|2 = 1, z ∈ T.

Thus, if in a paraunitary filter bank, one of the latter conditions are satisfied and if G and
H are related by alternating flips, we have an (orthogonal) PR QMF filter bank.

It should be noted that taking a paraunitary filter bank to get PR is an overkill. This
forces for instance the matrix K to be unitary. For PR we only needed KK̃∗ = I. Thus we
can choose two different matrices K and K̃ which are biorthogonal. We actually need

H(z)H̃∗(z) +H(−z)H̃∗(−z) = 2

G(z)G̃∗(z) +G(−z)G̃∗(−z) = 2

H(z)G̃∗(z) +H(−z)G̃∗(−z) = 0

G(z)H̃∗(z) +G(−z)H̃∗(−z) = 0.
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The last two relations hold if we choose mixed alternating flips

H(z) = −zNG̃∗(−z) and G(z) = −zNH̃∗(−z)

with N odd. This leads to H∗G̃ = 0 = G∗H̃. One only has to satisfy then the biorthogo-
nality relation

H(z)H̃∗(z) +H(−z)H̃∗(−z) = 2

or HH̃∗ = I to get the required PR.
This idea will be the basis of the biorthogonal wavelets, which will be discussed later.

First we shall discuss the orthogonal wavelets that correspond to the choice of a paraunitary
filter bank. The mathematical framework will be multiresolution, considered in the next
chapter.

4.6 Exercises

1. What is the matrix representation of the downsampling operation (↓ 2)? What is the
operation that the transpose of this matrix will represent?

2. Can you go through our analysis for the two channel filter bank again, now assuming
that it is an M channel filter bank?

3. Derive the polyphase description in the time domain. This means the following. Con-
sider the filter bank of Figure 4.3. The input of the filter bank is the signal s = (sj).
Define se = (↓ 2)s and so = (↓ 2)D−1s. Thus s2

j = s2j and soj = s2j+1. The filter

H̃∗ has coefficients h̃−k and the filter G̃∗ has coefficients g̃−k. If we denote the LP

and HP signals as v and w respectively, then show that s = h̃e∗ ∗ se + Dh̃o∗ ∗ so and
w = g̃e∗ ∗ se +Dg̃o∗ ∗ so. Which gives the scheme

s

v

w
+

+h̃e∗

g̃e∗

D−1g̃o∗

↓

↓D−1

D−1h̃o∗

This is the scheme that corresponds to the “black box” representation P̃∗ of Figure
4.5. Check that this indeed the same! Do a similar analysis in the time domain for the
synthesis phase.
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Chapter 5

Multiresolution

5.1 Introduction

Consider a 2π-periodic signal, thus a signal from the time domain L2
2π. As we know, this

can be represented in terms of the basis functions {eikt}k∈Z: f(t) =
∑

k∈Z
fke

ikt with Fourier
coefficients fk =

〈
eikt, f

〉
. If we do not want basis functions with infinite support on the

time axis, we should replace this by basis functions with a finite width on the time and
on the frequency axis. If we want to include all frequencies, we can do this by contraction
and stretching one “mother” function ψ(t). This corresponds for example to considering
basis functions of the form ψ(2nt), n ∈ Z. To catch high frequencies, n should be large
and thus these functions will have a narrow support on the time axis. This is confirmed by
the Heisenberg uncertainty principle since a large width S in the frequency domain implies
a small width s in the time domain. These narrow functions will not be able to cover the
whole time support. Thus we have to translate these basis functions as well, so that they can
cover the whole time-support. Therefore, we consider a two-parameter family of functions:
ψ(2nt− k), n, k ∈ Z. Suppose that in L2

2π: ‖ψ‖2 = 1, then clearly ‖ψ(2nt)‖2 = 2−n, thus to
have a normalized basis, we need to consider the basis functions

ψnk(t) = 2n/2ψ(2nt− k).

The dilation parameter n will stretch or compress the basis functions on the t-axis. It
corresponds to a translation on the ω-axis of its Fourier transform. The translation parameter
k translates the basis function on the t-axis and will stretch or compress the Fourier transform
on the ω-axis.

The basis functions {ψn,k}k∈Z will generate a subspace Wn which is called the space of
resolution n. The projection of f on this space is a representation of f at resolution level n.

Thus the representation of a signal in the wavelet basis should be of the form

f(t) =
∑

n,k∈Z

ankψnk(t). (5.1)

If we would succeed in making the wavelet basis orthonormal, then the wavelet coefficients
ank are given by ank = 〈ψnk, f〉. The representation of f at resolution n is given by fn(t) =∑

k ankψnk(t).
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Exactly the same intuitive reasoning can be applied in the case of non-periodic signals.
This leads to the same kind of wavelet transform.

5.2 Bases and frames

Before we start working with bases, we will first reflect on the notion of basis and generating
set for infinite dimensional (function) spaces.

A basis is a set that is generating and free (i.e. linearly independent). In an infinite
dimensional Hilbert space, we should be more careful since we have to deal with infinite
sums and we have to take convergence aspects into account.
{ϕn} is called a Schauder basis for a Hilbert space H if for all f ∈ H there is a unique

sequence {cn} such that f =
∑
cnϕn. The equality means convergence in the norm of

the Hilbert space. The basis is called unconditional if the convergence is uniform, i.e.,
independent of the order of the summation.

The most comfortable situation to work in is when we have an orthonormal basis, where
〈ϕn, ϕm〉 = δn−m. We have for all f ∈ H that there is a unique sequence c = {ck} such that
f =

∑
k ckϕk with ck = 〈f, ϕn〉, and the Parseval equality holds ‖f‖2H =

∑
| 〈f, ϕn〉 |2 =

‖c‖2`2(Z).
A Riesz basis is not really an orthonormal basis but it is “equally easy” to work with since

it is topologically the same. This is the meaning of the following definition. A basis {ϕn} is
called a Riesz basis if it is topologically isomorphic with an orthonormal basis. Thus there
is a topological isomorphism1 T : H → H such that ϕn = Tun with {un} an orthonormal
basis. In other words, a Riesz basis is “topologically equivalent” with an orthonormal basis.

In a much more general situation, consider a set of atoms {ϕn} ⊂ H which need not
be a basis. This set is sometimes called a dictionary of atoms. For f ∈ H, the expansion
f =

∑
ckϕk, is called a representation of f (with respect to {ϕn}). The mapping L : H →

`2(Z) : f 7→ {〈f, ϕn〉} is the representation operator or the analysis operator.
If the dictionary {ϕn} is an orthonormal basis, then the Parseval equality can be written

as ‖f‖2H = ‖Lf‖2L(H) where L(H) = {Lf : f ∈ H} ⊂ `2(Z) and L is the representation
operator for that basis. This operator L is a unitary operator in the case of an orthonormal
basis and we have f = L∗Lf =

∑ 〈f, ϕn〉ϕn. The synthesis operator is given by L∗ : L(H)→
H : c = (ck) 7→

∑
ckϕk. In this case L∗ = L−1.

The following theorem characterizes an orthonormal basis.

Theorem 5.2.1. If {ϕn} is an orthonormal sequence in the Hilbert space H, then the fol-
lowing are equivalent.

1. {ϕn} is an orthonormal basis for H

2. if 〈f, ϕn〉 = 0 for all n, then f = 0

3. the analysis operator L is injective

4. {ϕn} is complete: the closure of span{ϕn} is equal to H

1A topological isomorphism is a bijective map T such that T and T−1 are continuous.
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5. Parseval equality holds: ‖f‖2H =
∑
| 〈f, ϕn〉 |2

6. the analysis operator L is unitary.

Example 5.2.1. For the space of all periodic bandlimited functions, i.e., with spectrum
in |ω| ≤ ωm, set ωs = 2ωm, then

√
T sinc[ωs(t − nT )] with T = 2π/ωs is an orthonormal

basis. This follows from the sampling theorem. It can certainly generate all the functions
in the space. On the other hand a basis is always minimal, i.e., it is not possible to remove
one element and still generate the whole space. In this example, the fact that the Nyquist
sampling frequency is used implies that the generating set is minimal, and no element can
be left out. This is what makes it a basis. Orthonormality is easily checked. 3

For a Riesz basis, the situation is slightly more general. It is given by ϕn = Tun with T
the topological isomorphism, thus a bounded operator with bounded inverse. Here biorthog-
onality appears in a natural way. Indeed, define ϕ̃n = T−∗un where T−∗ = (T−1)∗ = (T ∗)−1.
Then

δn−m = 〈un, um〉 =
〈
T−1Tun, um

〉
=
〈
Tun, T

−∗um
〉

= 〈ϕn, ϕ̃m〉 .
Thus {ϕn} and {ϕ̃n} form biorthogonal sets. We have because {un} is an orthonormal basis
and T is linear

f = T (T−1f) = T
∑〈

un, T
−1f
〉
un =

∑〈
T−∗un, f

〉
Tun =

∑
〈ϕ̃n, f〉ϕn = L∗L̃f.

We have set
L̃f = {〈ϕ̃n, f〉}, and L∗c =

∑
cnϕn.

Similarly one can derive that

f = T−∗(T ∗f) =
∑
〈ϕn, f〉 ϕ̃n = L̃∗Lf

with
Lf = {〈ϕn, f〉}, and L̃∗c =

∑
cnϕ̃n.

So that, because ϕn = Tun = TT ∗ϕ̃n, and therefore L∗ = (TT ∗)−1L̃∗, we have

L̃∗L = L∗L̃ = (TT ∗)−1L∗L = IH

and thus L̃∗ = (TT ∗)L∗ gives the reconstruction of f from Lf : for all f ∈ H: f =
[(TT ∗)L∗](Lf). Thus the analyis operator L is related to the reconstruction or synthesis
operator L̃∗ = (TT ∗)L∗ = (L∗L)L∗.

Now we come to the definition of a frame. This is a set {ϕn} that is somewhat looser
than a Riesz basis. The Riesz basis was still a basis and therefore it contained independent
elements. This need not be true anymore for a frame. It is still a complete system for H,
but the representation for a frame can be redundant. When a frame becomes minimal, i.e.
if no more redundant elements can be removed, then it becomes a Riesz basis.

The set {ϕn} is a frame if it is complete and if there exist constants A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
| 〈ϕn, f〉 |2 ≤ B‖f‖2. (5.2)
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The constants A and B are called the frame bounds or Riesz bounds.
We note that a frame is complete in H, i.e., the closure of span{ϕn} is equal to H, but

it need not be a Riesz basis because it may contain redundant elements. A Riesz basis is
always a frame though.

orthonormal basis⇒ Riesz basis⇒ frame⇒ complete set.

For a given frame {ϕn}, we define the frame operator S as Sf =
∑ 〈ϕn, f〉ϕn. By

definition, the frame operator is a bounded operator with bounded inverse. In fact ‖S‖ = B
and ‖S−1‖ = A−1 give the best possible frame bounds.

The frame is called tight if A = B.

Example 5.2.2. Let {uk} be an orthonormal basis, then {u1, u1, u2, u2, u3, u3, . . .} is a tight
frame (A = B = 2). 3

An exact frame (i.e., a minimal frame where removing one element makes it incomplete)
is a Riesz basis.

For a frame there is always a dual frame (which is not biorthogonal). Indeed, the frame
operator S is a topological isomorhism, and thus, we can associate with a frame {ϕn} the
dual frame {ϕ̃n = S−1ϕn}. The frame bounds for {ϕ̃n} are B−1 and A−1.

The frame operator can also be factored. Define the analysis and synthesis operators

Lf = {〈ϕn, f〉} and L∗c =
∑

cnϕn.

Then Sf =
∑ 〈ϕn, f〉ϕn = L∗Lf . Thus S = L∗L. The operator R = LL∗ is called the

correlation operator of the frame. It is positive semi-definite and self-adjoint and it maps
L(H) bijectively onto itself. Its matrix representation is [〈ϕi, ϕj〉]i,j . It can be shown that
the analysis operators for primal and dual frame are related by L̃ = RL.

The following characterizes when a frame is a Riesz basis.

Theorem 5.2.2. Given a frame {ϕn} of a Hilbert space and the corresponding operators as
defined above then the following are equivalent

1. {ϕn} is a Riesz basis

2. it is an exact frame

3. L is onto `2(Z), i.e. {ϕn} is a Riesz-Fischer sequence2

4. L∗ is one to one

5. R is a topological isomorphism on `2(Z)

6. R > 0 (positive definite, hence invertible)

2A Riesz-Fischer sequence means that for all c ∈ `2(Z) there is some f ∈ H such that c = {〈ϕn, f〉}, i.e.,
such that c = Lf .

5.2. BASES AND FRAMES
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To stress once more the meaning of the frame condition (5.2) we note the following.
Two elements are independent if the first is not a multiple of the other, i.e., they are at a
positive angle. The basis has independent elements if there is a positive angle between an
element and any subspace spanned by other elements in the basis. However, in the infinite
dimensional case, the angle between two sequences of basis elements can be positive but tend
to zero. In that case the basis is called unstable. A Riesz basis is a stable basis where the
latter does not happen. This can be expressed by the frame condition (5.2). Obviously, if the
basis is orthogonal, then the angle is certainly not zero and this will always be a stable basis.
The topological isomorphism can change the right angles and the lengths of the orthonormal
basis but can not shrink them to zero (because it has a bounded inverse).

The reconstruction of f from its frame representation Lf is not obvious because the
representation is redundant so that there exist precise relations between the numbers in Lf .
The slightest perturbation to these data will make this the representation a sequence of
numbers that is not the representation of any function for this frame. If the data are exact,
then the function could be recovered from its representation by an iterative scheme. If the
representation is not exact, then we could in principle recover several possible functions
from several subsets. As an estimate of the original function, one can take an average over
the different reconstructions. For some applications (like noise reduction) this has even an
advantageous smoothing effect.

5.3 Discrete versus continuous wavelet transform

The array of coefficients {ank}n,k∈Z in (5.1) is called the discrete wavelet transform (DWT)
of f . We have chosen the dilation and translation parameter to be discrete.

The signal however was considered to be continuous. As we mentioned before, for prac-
tical computations, the signal will be sampled and will therefore be discrete (like in the
example of the introduction). Thus f ∈ `2(Z) (in the non-periodic case) or f is just a finite
vector of samples f = [f0, . . . , fN−1]. Thus we work with complex vectors which are infinitely
long or which have a finite length. In the above reasoning, the inner products become dis-
crete sums over Z or over {0, . . . , N − 1}, but the basic idea is exactly the same. It is of
course the latter situation which will occur in practical computations. For practical reasons
(as in the discrete Fourier transform – DFT), one chooses for N most often a power of 2:
N = 2K . As a matter of fact, if the methods have to be implemented on a digital computer,
then the integrals will be evaluated by quadrature formulas anyway, which means that they
are replaced by sums.

Mathematically however, there is no reason why we should not go in the opposite direction
and (like in Fourier analysis) let the dilation and translation parameters be continuous.
Because of lack of time, and because we are mainly interested in practical implementations,
we shall not discuss continuous wavelet transforms in depth. We briefly introduce the idea.

Calling the continuous parameters a and b, then one usually considers then atoms (they
do not form a basis)

ψa,b(t) =
√
|a|ψ(a(t− b)), a 6= 0, a, b ∈ R

with ψ ∈ L2.

5.3. DISCRETE VERSUS CONTINUOUS WAVELET TRANSFORM
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Example 5.3.1. [Mexican hat] Consider

ψ(t) = (t2 − 1)e−
1

2
t2 .

Note that ψ(t) is the second derivative of the function exp(− 1
2
t2). Thus its Fourier transform

is Ψ(ω) = (iω)2F(e−t
2/2) = −ω2 exp(−1

2
ω2). The function ψ(t) and two of its dilations are

plotted in Figure 5.1. One can see three of the basis functions ψa,b(t). Note that neither ψ(t)

Figure 5.1: The mexican hat and two of its dilations
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nor Ψ(ω) has a compact support, but they have a finite width and decay rapidly outside a
finite interval. From left to right, b is increasing (shift more and more to the right) and |a|
is increasing (stretch more and more). 3

With continuous parameters, the continuous wavelet transform is a function of two real
variables a and b:

Wψf = F (a, b) =
1√

2πCψ

∫ ∞

−∞
f(t)ψa,b(t)dt =

1√
Cψ
〈ψa,b, f〉 , f ∈ L2(R),

where it is supposed that

0 < Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞

with Ψ the Fourier transform of ψ. This is called the admissibility condition. This Cψ is
some normalizing factor, similar to the factor 2π in the continuous Fourier transform. Note
that Cψ < ∞ implies Ψ(0) = 0 = 1√

2π

∫∞
∞ ψ(t)dt: if ψ is a wavelet, then its integral should

be zero. Note that for a = 2n and b = 2−nk, we are back in the discrete case.
Because b refers to ‘time’ and a refers to ‘scale’, thus (b, a) is a point in the time-scale

space, the CWT is therefore sometimes caled a time-scale representation of the signal.
The CWT has the following properties

1. (linear): Wψ(αf + βg)(a, b) = α(Wψf)(a, b) + β(Wψg)(a, b).

2. (time invariant): Wψ(Duf)(a, b) = (Wψf)(a, b− u).

3. (dilation): (Wψfv)(a, b) = (Wψf)(v−1a, vb), fv(t) =
√
|v|f(vt).

5.3. DISCRETE VERSUS CONTINUOUS WAVELET TRANSFORM
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The inverse transform is given by

W−1
ψ F = f(t) =

1√
2πCψ

∫ ∞

−∞

[∫ ∞

−∞
F (a, b)ψa,b(t)db

]
da

The Lebesgue space L2(R) can be decomposed into two Hardy spaces L2(R) = H2
−(R)⊕

H2
+(R), where

H2
+(R) = {f ∈ L2(R) : suppF(f) ⊂ [0,∞)}, H2

−(R) = {f ∈ L2(R) : suppF(f) ⊂ (−∞, 0]}.

If we know that F ∈ Wψ(H2
+(R)), then we can restrict ourselves to a positive parameter

a > 0, then the definition of Cψ becomes

Cψ =

∫ ∞

0

|Ψ(ω)|2
ω

dω <∞

and the reconstruction formula is

f(t) =
1√

2πCψ

∫ ∞

0

[∫ ∞

−∞
F (a, b)ψa,b(t)db

]
da.

Example 5.3.2. [Morlet wavelet] The Morlet wavelet is a modulated Gaussian: ψ(t) =
eiαte−t

2/2. The parameter α is chosen appropriately. This wavelet however does not satisfy
the condition ψ̂(0) = 0. However it is satisfied up to a small error. For α ≥ 5.5, the error is
numerically negligible. 3

Note that in both of the previous situations (whether the wavelet transform was discrete
or not), we discuss a continuous signal f (periodic or not). For practical implementation,
also the signal shall be discretized as we shall discuss later.

5.4 Definition of a multiresolution analysis

Let us now give the mathematical definition of a multiresolution analysis (MRA). We give
it for the space L2 = L2(R) of analog signals, but the same holds true for periodic signals or
for digital signals with only small modifications.

Definition 5.4.1 (Multiresolution). A multiresolution analysis of L2 is a nested sequence
of subspaces · · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · such that3

1.
∨

n∈Z

Vn = L2 and
⋂
n∈Z

Vn = {0}.

2. (scale invariance): f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1, j ∈ Z.

3The notation
∨

n∈Z
Vn means the closure of V =

⋃
n∈Z

Vn in the norm of L2. Thus it adds to V all the
limits of sequences of functions from V which converge in L2. The statement

∨
n∈Z

Vn = L2 is equivalent
to saying that V is dense in L2: any function from L2 can be approximated arbitrary close (in L2-norm) by
elements from V .

5.4. DEFINITION OF A MULTIRESOLUTION ANALYSIS
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3. (shift invariance): f(t) ∈ V0 ⇔ f(t− k) ∈ V0, k ∈ Z.

4. (shift invariant basis): {ϕ(t− k)}k∈Z forms a Riesz basis for V0.

Example 5.4.1. [Haar wavelets] The example that we have seen in the introduction
defines a MRA. There we have seen it for a finite interval, but we can easily generalize
this for the whole real axis. Let us define the box functions χnk which are given by the
characteristic functions for the intervals Ink = [2−nk, 2−n(k+1)]. Thus χnk(t) = 1 for t ∈ Ink
and χnk(t) = 0 for t 6∈ Ink. If we define Vn = span{χnk : k ∈ Z}, then we have a MRA.
In the introduction we have used the original basis χ0k with coordinates that were nonzero
only for k = 1, . . . , 8. The fundamental function (called scaling function) ϕ(t) is given by
χ00 and χ0k(t) = ϕ(t− k). 3

5.5 The scaling function or father function

The function ϕ in the definition of a MRA is called a scaling function or father function.
Denoting its shifted versions by ϕ0k(t) = ϕ(t− k), then these should be a Riesz basis for V0,
so that any f ∈ V0 can be written as

f(t) =
∑

k

akϕ0,k(t), (ak) ∈ `2.

Since also ϕ(t) ∈ V0, and by the scale invariance property also ϕ(t/2) ∈ V0, there should
exist (ck) ∈ `2 such that

ϕ(
t

2
) =

∑

k

ckϕ(t− k), (ck) ∈ `2, t ∈ R.

Thus
ϕ(t) =

∑

k

ckϕ(2t− k), k ∈ Z, t ∈ R.

This is called the dilation equation or two-scale relation
To avoid trivialities, we require

∫∞
−∞ ϕ(t)dt = θ 6= 0, i.e. Φ(0) = θ/

√
2π, then

2

∫ ∞

−∞
ϕ(t)dt =

∑

n

cn

∫ ∞

−∞
ϕ(2t− n)d(2t− n),

thus ∑

n

cn = 2.

Suppose that we can solve the dilation equation for some choice of the coefficients ck, then
we may consider the functions

ϕnk(t) = 2n/2ϕ(2nt− k), n, k ∈ Z.

Note that Vn = span{ϕnk : k ∈ Z}.

5.5. THE SCALING FUNCTION OR FATHER FUNCTION
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We observe also that the solution of the dilation equation is only defined up to a multi-
plicative constant. Thus, if ϕ(t) is a solution, then θϕ(t) is also a solution for any constant
θ 6= 0. This is precisely the constant we have in

∫
ϕ(t)dt = θ 6= 0. This θ will only be fixed

if we impose a normalisation condition like for example ‖ϕ‖ = 1.

5.6 Solution of the dilation equation

We give some sample solutions of the dilation equation

ϕ(t) =
∑

k

ckϕ(2t− k),
∑

k

ck = 2.

Example 5.6.1. Taking c0 = 2 and all other ck = 0, we see that ϕ = δ (the Dirac impulse)
is a solution because it satisfies δ(t) = 2δ(2t). This however is a pathological solution
which does not have the usual properties for the solutions, so we shall not consider this to
correspond to a wavelet. 3

Example 5.6.2. [Haar or box function] For c0 = c1 = 1, the solution is a box function:

ϕ(t) = χ[0,1[(t) =

{
1, 0 ≤ t < 1
0, otherwise

The correctness can be checked on a picture (see Figure 5.2) 3

Figure 5.2: The box function and the dilation equation
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Example 5.6.3. [piecewise linear spline or hat function] For c1 = 1 and c0 = c2 = 1
2
,

the solution is the hat function:

ϕ(t) =





t, 0 ≤ t ≤ 1
2− t, 1 ≤ t ≤ 2
0, otherwise

The correctness can again be checked graphically (see Figure 5.3 – the right figure is ex-
plained below). 3

Such graphical verifications are only possible for simple examples. We need more sys-
tematic ways of solving the dilation equation. We give four methods.

5.6. SOLUTION OF THE DILATION EQUATION
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Figure 5.3: The hat function and the dilation equation
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5.6.1 Solution by iteration

One way to find ϕ(t) is by iterating ϕ[j](t) =
∑

k ckϕ
[j−1](2t− k).

We remark however that ϕ[j] need not necessarily converge uniformly to the solution ϕ.

Example 5.6.4. Take for example with ϕ0 = the box function χ[0,1[.
For c0 = 2, the box function gets taller and thinner, so it goes to the Dirac function.
For c0 = c1 = 1, the box remains invariant ϕ[j] = ϕ[0] , j ≥ 0.
For c1 = 1, c0 = c2 = 1

2
, the hat function appears as j →∞. 3

Example 5.6.5. [Quadratic spline] Using a computer program with graphical possibilities,
one can try the same with c0 = c3 = 1

4
, c1 = c2 = 3

4
. The solution is a quadratic spline.

ϕ(t) =





t2, 0 ≤ t ≤ 1
−2t2 + 6t− 3, 1 ≤ t ≤ 2 (quadratic spline)
(3− t)2, 2 ≤ t ≤ 3
0 otherwise

3

Example 5.6.6. [cubic B-spline] Another example corresponds to the choice c0 = c4 = 1
8
,

c1 = c3 = 1
2
, c2 = 3

4
. The solution is the cubic B-spline. 3

Example 5.6.7. [D2 Daubechies] An interesting example is obtained by choosing c0 =
1
4
(1 +

√
3), c1 = 1

4
(3 +

√
3), c2 = 1

4
(3 −

√
3), c3 = 1

4
(1 −

√
3). The solution is somewhat

surprising. The corresponding wavelet is called D2 (D for Daubechies and 2 because there
are 2 vanishing moments – see later). The result is plotted in the first part of Figure 5.4.
For the corresponding wavelet function ψ see below. 3

As an application of this iteration method, we can immediately show the following prop-
erty about the support4 of the function ϕ.

Theorem 5.6.1. If ϕ(t) =
∑

n cnϕ(2t − n) with cn = 0 for n < N− and n > N+, then
supp(ϕ) ⊂ [N−, N+].

4Recall that the support is the closure of the complement of the set where the function is zero.

5.6. SOLUTION OF THE DILATION EQUATION
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Figure 5.4: The Daubechies D2 scaling function and wavelet.
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Proof. We use the construction by iteration and assume that the process converges. Let
ϕ[0] = χ[− 1

2
, 1
2
[ and iterate

ϕ[j](t) =
∑

n

cnϕ
[j−1](2t− n)

Denote supp(ϕ[j]) = [N
[j]
− , N

[j]
+ ], then

N
[j]
− =

1

2
(N

[j−1]
− +N−) , N

[j]
+ =

1

2
(N

[j−1]
+ +N+)

with

N
[0]
− = −1

2
, N

[0]
+ =

1

2
.

An easy induction shows that

N
[j]
− = 2−jN

[0]
− +

(
1

2
+

1

22
+ · · ·+ 1

2j

)
N−,

which converges for j →∞ to N−. A similar argument shows that limj→∞N
[j]
+ = N+. This

proves the theorem.

The iteration process described here may not always converge smoothly.

Example 5.6.8. Take c0 = c3 = 1 and all other ck = 0. The solution of the dilation equation
is ϕ(t) = χ[0,3[, but the iteration process does not converge uniformly. Check that. 3

5.6. SOLUTION OF THE DILATION EQUATION
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5.6.2 Solution by Fourier analysis

Here the dilation equation is transformed in the Fourier domain and solved there. Defining
the Fourier transform

Φ(ω) =
1√
2π

∫ ∞

−∞
ϕ(t)e−itωdt,

the dilation equation gives

Φ(ω) =
∑

n

cn√
2π

∫ ∞

−∞
ϕ(2t− n)e−itωdt =

C(ω
2
)√

2π

∫ ∞

−∞
ϕ(τ)e−iτω/2dτ

= C(ω
2
)Φ(ω

2
)

where5 C(ω) = 1
2

∑
n cne

−inω. Note that C(0) = 1. Thus the dilation equation in the Fourier
domain reads

Φ(2ω) = C(ω)Φ(ω).

Iterating the above result and using Φ(0) = 1/
√

2π
∫∞
−∞ ϕ(t)dt = θ/

√
2π 6= 0, we find

Φ(ω) =
θ√
2π

∞∏

j=1

C(ω/2j).

It can be shown rigorously that this infinite product makes indeed sense but we shall not do
this here.

Example 5.6.9. c0 = 2, then C(ω) = 1, Φ(ω) = θ/
√

2π and this is indeed the Fourier
transform of the Dirac function. 3

Example 5.6.10. c0 = 1 = c1 (box function). The product of the C-functions (C(ω) =
(1 + e−iω)/2) is a geometric series.

C(ω/2)C(ω/4) =
1

4
(1 + e−iω/2)(1 + e−iω/4) =

1− e−iω
4(1− e−iω/4) .

The product of N such functions is

N∏

k=1

C(ω/2k) =
1− e−iω

2N(1− e−iω/2N )

which for N →∞ approaches
√

2π

θ
Φ(ω) =

1− e−iω
iω

=

∫ 1

0

e−iωtdt =
√

2πFχ[0,1[

and this identifies Φ as θ times the Fourier transform of the box function. For θ = 1 we
get the box function χ[0,1[. Another choice of θ 6= 0 gives the same function with another
normalization. 3

5Observe that H(ω) =
√

2C(ω) = 1√
2

∑
k
cke−ikω is the Fourier transform of (hk) with hk = 1√

2
ck.

5.6. SOLUTION OF THE DILATION EQUATION
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The Fourier analysis approach now gives easily the following examples which you may
check.

Example 5.6.11. The hat function comes from squaring the previous C(ω), hence squaring∏∞
1 C(ω/2j). 3

Example 5.6.12. The cubic spline comes from squaring again. 3

Example 5.6.13. [Shannon] Suppose

C(ω) =

{
1, |ω| ≤ π/2
0, |ω| > π/2

and Φ(ω) =

{
1, |ω| ≤ π
0, |ω| > π

Then the dilation equation Φ(2ω) = C(ω)Φ(ω) is satisfied. In the time domain it becomes
ϕ(t) =

∑
k ckϕ(2t − k) with c0 = 1, c2k = 0 and c2k+1 = (−1)k 2

(2k+1)π
. The solution is

obviously

ϕ(t) =
√

2π
sin πt

πt
.

This is related to the Shannon wavelet. 3

5.6.3 Solution by recursion

Suppose ϕ(t) is known at integer values t = k. Then the dilation equation defines ϕ(t) at
half integers t = k/2. Repeating this process yields ϕ(t) at all dyadic points t = k/2j. This
is a fast algorithm and it is often used in practice.

We know that ϕ(k) = 0 for k /∈ {N−, . . . , N+}. For example, if N− = 0 and N+ = 5 we
get 



ϕ(0)
ϕ(1)
ϕ(2)
ϕ(3)
ϕ(4)
ϕ(5)




=




c0
c2 c1 c0
c4 c3 c2 c1 c0

c5 c4 c3 c2 c1
c5 c4 c3

c5







ϕ(0)
ϕ(1)
ϕ(2)
ϕ(3)
ϕ(4)
ϕ(5)



.

Obviously, this matrix should have an eigenvalue 1. The function values ϕ(k) are the com-
ponents of the corresponding eigenvector. It also follows from ϕ(N−) = cN−

ϕ(N−) and
ϕ(N+) = cN+

ϕ(N+) that ϕ(N−) = ϕ(N+) = 0 (unless cN−
= 1 or cN+

= 1).

Example 5.6.14. For D2, we can find starting values at ϕ(1) and ϕ(2) as follows. We
know by Theorem 5.6.1 that suppϕ(t) ⊂ [0, 3]. We also know that at the boundaries,
ϕ(0) = ϕ(3) = 0, so that of all values ϕ(k), k ∈ Z, only ϕ(1) and ϕ(2) are nonzero. Hence,
the dilation equation gives

ϕ(1) = c1ϕ(1) + c0ϕ(2)
ϕ(2) = c3ϕ(1) + c2ϕ(2)

≡
[
ϕ(1)
ϕ(2)

]
= C

[
ϕ(1)
ϕ(2)

]

Thus [ϕ(1) ϕ(2)]t is an eigenvector for the matrix C =

[
c1 c0
c3 c2

]
. Its eigenvalues are λ = 1

and λ = 1
2
. For λ = 1, the eigenvector is ϕ(1) = cc0, ϕ(2) = cc3. The constant c is chosen to
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normalize the vector. As we shall see later in Theorem 5.7.1, the values of ϕ(k) should sum
up to θ. Hence, then c = θ/(c0 + c3). This eventually gives the required function values to
start with. The next values at 1/2 and 3/2 are given by

ϕ(
1

2
) = c0ϕ(1)

ϕ(
3

2
) = c2ϕ(1) + c1ϕ(2)

etcetera. 3

5.6.4 Solution by the cascade algorithm

Suppose f ∈ Vj ⊂ Vj+1 is given by

f(t) =
∑

k

sjkϕ(2jt− k) = f(t) =
∑

k

sj+1,kϕ(2j+1t− k).

From the dilation equation, we get

ϕ(2jt− k) =
∑

i

ciϕ(2j+1t− (2k + i)) =
∑

l

cl−2kϕ(2j+1t− l).

Hence
f(t) =

∑

l

∑

k

sjkcl−2kϕ(2j+1t− l)

so that
sj+1,l =

∑

k

cl−2ksjk.

Next observe that if we start the iteration with s0k = δk, then f(t) = ϕ(t). Because the
support of ϕ(2jt − k) become infinitely narrow for j → ∞, it means that for j sufficiently
large, the function value ϕ(k/2j) is approximately given by sjk.

5.7 Properties of the scaling function

The dilation equation (and hence its solution ϕ) is completely defined by the coefficients
(ck), thus by the function

C(ω) =
1

2

∑

k

cke
−ikω ∈ L2

2π.

Therefore properties of ϕ correspond to properties of the filter coefficients (ck) or equivalently
of the function C.
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5.7.1 General properties

We have already normalized the coefficients ck such that

∑

k

ck = 2 ⇔ C(0) = 1.

Let us show some properties of the scaling function.

Theorem 5.7.1 (partition of unity). We have

∑

k

ϕ(t− k) =
∑

k

ϕ(k) = θ.

Proof. Consider wj(t) =
∑

k ϕ(2−j(t− k)), then we have to prove that w0(t) = θ. Because
this function has period 1, we may restrict ourselves to 0 ≤ t ≤ 1. Now

wj(t) =
∑

k

ϕ(2−j(t− k))

=
∑

k

∑

l

clϕ(2−(j−1)(t− k)− l)

=
∑

l

cl
∑

k

ϕ(2−(j−1)(t− k − 2j−1l)) (k + 2j−1l = n)

=
∑

l

cl
∑

n

ϕ(2−(j−1)(t− n)) = 2wj−1(t) = 2jw0(t).

Hence

w0(t) =
wj(t)

2j
= lim

j→∞

wj(t)

2j
= lim

j→∞

∑

l

2−jϕ(2−j(t+ l)),
t+ l

2j
∈ [

l

2j
,
l + 1

2j
].

This is a Riemann sum for the integral w0(t) =
∫
ϕ(s)ds = θ.

Equivalent forms are

Theorem 5.7.2. The following properties are equivalent

1. The partition of unity ∑

k

ϕ(t− k) =
∑

k

ϕ(k) = θ.

2. The following condition of the filter coefficients

∑

n

(−1)ncn = 0 or 1 =
∑

k

c2k =
∑

k

c2k+1. (5.3)

5.7. PROPERTIES OF THE SCALING FUNCTION



5. MULTIRESOLUTION 66

3. The following condition of C(ω)

C(π) = 0. (5.4)

Proof. 1. (1) ⇒ (2): By the dilation equation,

θ =
∑

l

ϕ(t− l) =
∑

l

(
∑

k

c2kϕ(2t− 2k − 2l) +
∑

k

c2k+1ϕ(2t− 2k − 2l − 1)

)

=
∑

j

(
∑

k

c2k

)
ϕ(2t− 2j) +

∑

j

(
∑

k

c2k+1

)
ϕ(2t− 2j − 1)

=
∑

j

αjϕ(2t− j), α2j =
∑

k

c2k, α2j+1 =
∑

k

c2k+1.

Because we know by hypothesis that also
∑

j ϕ(2t− j) = θ, it follows by the indepen-
dence of the ϕ(2t− j) that αj = 1 for all j.

2. (2) ⇒ (1): Set w(t) =
∑

k ϕ(t− k) then using the dilation equation we find

w(t) =
∑

k

∑

n

cnϕ(2t− 2k − n)

=
∑

k

[
∑

n even

cnϕ(2t− (2k + n)) +
∑

n odd

cn(2t− (2k + n))

]

=
∑

k

[
∑

`

c2`ϕ(2t− 2(k + `)) +
∑

`

c2`+1ϕ(2t− 2(k + `)− 1)

]

=
∑

j

[
∑

`

c2`ϕ(2t− 2j) +
∑

`

c2`+1ϕ(2x− 2j − 1)

]

=
∑

j

ϕ(2t− 2j)(
∑

`

c2`) +
∑

j

ϕ(2t− 2j − 1)(
∑

`

c2`+1)

=
∑

j

ϕ(2t− j) = w(2t)

This means that w has to be constant and thus independent of t, so that it equals∑
k ϕ(k). Now integrate

∑
k ϕ(t− k) = c over [0, 1] then

c =
∑

k

∫ 1

0

ϕ(t− k)dx =
∑

k

∫ t−k+1

t−k
ϕ(τ)dτ =

∫

R

ϕ(τ)dτ = θ.

Hence c = θ.

3. (2) ⇔ (3): Because

C(ω) =
1

2

∑

k

cke
−ikω, C(π) =

1

2

∑

k

ck(−1)k.

Because
∑

k ck = 2, we see that (2) and (3) are equivalent.
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5.7.2 Orthogonality

By definition, we know that the system {ϕn0(t) = ϕ(t − n)} is a Riesz basis for V0. What
can be said if we assume that it is an orthogonal basis?

First we have the following property about a normalization of an orthogonal basis.

Lemma 5.7.3 (normalization). If {ϕ0k} is an orthogonal basis, then
∣∣∣∣
∫
ϕ(s)ds

∣∣∣∣
2

=

∫
|ϕ(s)|2ds.

Proof. By the orthogonality we have
∣∣∣∣
∫
ϕ(s)ds

∣∣∣∣
2

=

∫
ϕ(s)

(∫
ϕ(τ)dτ

)
ds =

∫
ϕ(s)

(
∑

k

ϕ(s− k)
)
ds

=
∑

k

∫
ϕ(s)ϕ(s− k)ds =

∫
|ϕ(s)|2ds

We may conclude that
√

2π‖ϕ‖2 = θ2. Also it is immediately verified that ‖ϕ(t)‖ =
‖ϕ(t− k)‖. Thus, if we set ‖ϕ‖ = 1, i.e. θ = (2π)1/4 then an orthogonal basis {ϕ0k} will be
orthonormal.

It is also clear that if {ϕ0k} is an orthonormal basis for V0, then {ϕnk} is an orthonormal
basis for Vn.

We now express the orthonormality of the {ϕ0k} in terms of the coefficients ck and in terms
of the filter C(ω). The next theorem says that (5.5) is equivalent with this orthogonality.
Note that the proof does not make use of the dilation equation.

Theorem 5.7.4. The system {ϕ0k} is orthonormal if and only if the Fourier transform Φ
satisfies

∞∑

k=−∞

|Φ(ω + 2kπ)|2 =
1√
2π
. (5.5)

Proof. Use the fact that ϕ(t− k) forms an orthonormal basis in V0, then

1

2π

∫ 2π

0

eimωdω = δm =
1√
2π

∫

R

ϕ(t)ϕ(t−m)dt

=
1√
2π

∫

R

eimω|Φ(ω)|2dω

=
1√
2π

∞∑

k=−∞

∫ (k+1)2π

k2π

eimω|Φ(ω)|2dω

=
1√
2π

∫ 2π

0

eimω

( ∞∑

k=−∞

|Φ(ω + 2kπ)|2
)
dω.

The second line is because the Fourier transform defines an isomorphism, the last line because
the Fourier transform is continuous. This proves (5.5).
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This has the following consequence.

Corollary 5.7.5. The function C(ω) = 1
2

∑
k cke

−ikω satisfies

|C(ω)|2 + |C(ω + π)|2 = 1 (5.6)

Proof. Recall Φ(2ω) = C(ω)Φ(ω) so that

1√
2π

=
∑

k

|Φ(ω + 2kπ)|2 =
∑

k

|Φ(2ω + 2kπ)|2 =
∑

k

|C(ω + kπ)|2|Φ(ω + kπ)|2.

Because C is 2π-periodic,

1√
2π

=
∑

k even

+
∑

k odd

= |C(ω)|2
∑

k

|Φ(ω + 2kπ)|2 + |C(ω + π)|2
∑

k

|Φ(ω + (2k + 1)π)|2

= |C(ω)|2
∑

k

|Φ(ω + 2kπ)|2 + |C(ω + π)|2
∑

k

|Φ(ω + π + 2kπ)|2.

Hence (5.6) follows.

Example 5.7.1. [hat function] Note that the hat function (c0 = c2 = 1, c1 = 1
2
) does not

satisfy this relation. It is not orthogonal to its integer translates (check it). 3

Corollary 5.7.6. In terms of the ck (5.6) is transformed into

∑

n

cn−2kcn−2` = 2δk−`. (5.7)

Proof. Note that (5.6) means that

1

4

∑

k,l

ckcle
−i(k−l)ω +

1

4

∑

k,l

ckcl(−1)k−le−i(k−l)ω = 1.

Hence the odd terms drop out and we get

∑

k−l even

ckcle
−i(k−l)ω =

∑

j

γje
−2ijω = 2

with
γj =

∑

k−l=2j

ckcl.

This has to be true for all ω, so that γj = 2δj. Thus
∑

n cncn−2j = 2δj. This is of course
equivalent with the statement to be proved. The complex conjugate drops out if the ck are
real.
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The property of the previous corollary:

∑

n

cn−2kcn = 2δk

is called double shift orthogonality for the coefficients ck.
To make the circle complete, we should show that double shift orthogonality implies the

orthogonality of the ϕ0k. However this is not true in general.

Lemma 5.7.7. If the iteration scheme coverges uniformly and if the ck satisfy the double
shift orthogonality then the system {ϕ0k} is orthogonal.

Proof. The proof goes by starting the iteration scheme with an orthogonal set: for example
the box functions. Then it is proved that orthogonality is preserved from iteration step
to iteration step. If the iteration scheme converges, then the resulting ϕ(t − k) will be
orthogonal. To prove the induction step we use again the dilation equation

r[i+1]
m,n =

1√
2π

∫
ϕ[i+1](t−m)ϕ[i+1](t− n)dt

=
1√
2π

∫ (∑

p

c̄pϕ[i](2t− 2m− p)
)(

∑

q

cqϕ
[i](2t− 2n− q)

)
dt

=
1√
2π

∫ (∑

p

c̄pϕ[i](2t− 2m− p)
)(

∑

j

cj−2lϕ
[i](2t− 2m− j)

)
dt, (

n = l +m
j = 2l + q

)

=
∑

p

∑

j

c̄pcj−2l
1√
2π

∫
ϕ[i](2t− 2m− p)ϕ[i](2t− 2m− j)dt

=
1

2

∑

p

∑

j

c̄pcj−2lr
[i]
p,j =

1

2

∑

j

c̄jcj−2l = δl = δm−n

where we used the induction hypothesis r
[i]
p,j = δp−j.

We thus may summarize

Theorem 5.7.8. If
∫
ϕ(t) = (2π)1/4 then the following are equivalent:

1. The system {ϕ0n} is orthonormal.

2. The Fourier transform Φ(ω) satisfies
∑∞

k=−∞ |Φ(ω + 2kπ)|2 = 1√
2π

This implies the following equivalent conditions

1. The function C(ω) satisfies |C(ω)|2 + |C(ω + π)|2 = 1

2. The coefficients ck are double shift orthogonal:
∑

n cn−2kcn−2` = 2δk−`

If the iteration scheme converges, then the 4 conditions are equivalent.
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Remark 5.7.1. Note that in the previous theorem, the last two conditions do not imply
the first two in general. For example the choice c0 = c3 = 1, c1 = c2 = 0 defines a ϕ which
is not orthogonal to its translates (it is the box function on the interval [0, 3]), yet these
coefficients satisfy (5.7) and (5.3) as can be easily checked.

There is an interesting practical consequence to the double shift orthogonality condition.

Corollary 5.7.9. Orthogonal scaling functions with a compact support must have an even
number of non-zero coefficients.

Proof. Suppose that the coefficients ck are zero for k /∈ {N−, . . . , N+} and that N+ −
N− = 2p > 0. This is impossible because then

∑
n c̄ncn−2k = 2δk implies for k = p that

(cN−
)(cN+

) = 0.

5.8 The wavelet or mother function

We know that in multiresolution analysis

Vn ⊂ Vn+1.

Suppose Wn is the orthogonal complement of Vn in Vn+1:

Vn+1 = Vn ⊕Wn.

Thus

V0 ⊕
n∑

k=0

Wk =
n⊕

−∞
Wk = Vn+1 and

∞⊕

−∞
Wk = L2.

Now consider the function ψ defined by

ψ(t) =
∑

n

dnϕ(2t− n) ∈ V1, dn = (−1)nc̄1−n. (5.8)

We shall explain in the next section where this definition comes from. In this section we first
try to get a bit familiar with the function ψ. It can be proved that (see section 5.9 below)
if the ϕ0k form an orthonormal basis for V0, then

ψ0k(t) = ψ(t− k)

forms an orthonormal basis for W0 and that more generally, the wavelets

ψnk(t) = 2n/2ψ(2nt− k) , n, k ∈ Z

are such that {ψnk : k ∈ Z} forms an orthonormal basis for Wn.
The function ψ(t) is called the mother function or the wavelet (function). The mother

functions for the previous examples can now be considered. One can easily check the following
examples (do it !).
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Figure 5.5: The Haar wavelet.
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Example 5.8.1. [Haar wavelet] For the box function (c0 = c1 = 1)

ψ(t) =

{
1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1

Figure 5.5 gives a plot of this wavelet. It is called the Haar wavelet. 3

Example 5.8.2. [piecewise linear wavelet] The hat function (c0 = c2 = 1
2
, c1 = 1) leads

to

ψ(t) =





−1/2− t, −1/2 ≤ t ≤ 0
3t− 1/2, 0 ≤ t ≤ 1/2
5/2− 3t, 1/2 ≤ t ≤ 1
t− 3/2, 1 ≤ t ≤ 3/2

The wavelet is plotted in Figure 5.3. 3

Note: The function ψ of example 5.8.2 is not really a wavelet according to our definition
via MRA. The scaling function ϕ is not orthogonal to its integer translates (thus it is certainly
not an orthogonal basis). The corresponding function ψ happens to be orthogonal to its
integer translates. But the most important defect is that the ψ(x− k) are not orthogonal to
the ϕ(t− l).

Example 5.8.3. For Daubechies D2, ψ(t− 1) is plotted in Figure 5.4. 3

Theorem 5.8.1. When

cn = 0 for n < N− and n > N+,

then

supp(ψ) ⊂
[
1

2
(1−N+ +N−),

1

2
(1 +N+ −N−)

]
.
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Proof. This follows from
ψ(t) =

∑

n

(−1)nc̄1−nϕ(2t− n)

and the fact that supp(ϕ) ⊂ [N−, N+]. First note that suppϕ ⊂ [N−, N+] implies that
suppϕ(2t − n) as a function of t is [(N− + n)/2, (N+ + n)/2]. On the other hand c1−n is
only nonzero for n ∈ [1−N+, 1−N−]. Therefore suppψ is exactly as stated. We leave the
details to the reader.

Let us develop now the analysis for ψ more exactly. It will give answers to questions such
as: Where does the defining relation (5.8) of the ψ come from? Do the ψnk for k ∈ Z form
indeed an orthonormal basis for the Wn? etc. We shall do this rather formally in section
5.9. This section can however be skipped. Section 5.10 gives a more informal approach.

5.9 Existence of the wavelet

Now let us prove the existence of the mother (wavelet) function.
We know that any f ∈ V0 can be written as

f(t) =
∑

k

akϕ(t− k)

with (ak) ∈ `2 since the series should converge in L2(R). Taking Fourier transforms, this
gives

F (ω) =
∑

k

ake
ikωΦ(ω) = Af (ω)Φ(ω), Af (ω) =

∑

k

ake
−ikω.

Clearly Af (ω) ∈ L2
2π and

‖Af (ω)‖2L2
2π

=
1

2π

∫ π

−π
|Af (ω)|2dω = ‖(ak)‖2`2 <∞.

Thus f ∈ V0 ⇔ F = AfΦ with Af ∈ L2
2π. Thus f ∈ V0 is completely characterized by

A ∈ L1
2π. The proof of the following theorem can be skipped in first reading (a much

simpler argument can be given in the case of discrete signals – see later). The basic idea
can be summarized as follows: Just as f ∈ V0 is characterized by A ∈ L2

2π, any function
of V−1 will be characterized by A(2ω)C(ω) with A ∈ L2

2π. The problem of constructing an
orthonormal basis for W−1 is thus equivalent with the construction of an orthonormal basis
for the orthogonal complement of functions A(2ω)C(ω) in L2

2π, which will be relatively easy.

Theorem 5.9.1. There exists a function ψ ∈ W0 such that {ψ(t − k)}k∈Z forms an or-
thonormal basis for W0.

Proof. If V is a subspace of L2(R), then V̂ will denote the subspace of L2(R) containing all
the Fourier transforms of V .
By the Fourier isomorphism:

V−1 ⊕W−1 = V0 ⇔ V̂−1 ⊕ Ŵ−1 = V̂0.
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We know that

V̂0 = {A(ω)Φ(ω) : A ∈ L2
2π}

V̂−1 = {A(2ω)Φ(2ω) : A ∈ L2
2π}.

By Φ(2ω) = C(ω)Φ(ω), we get

V̂−1 = {A(2ω)C(ω)Φ(ω) : A ∈ L2
2π}. (5.9)

Define the operator (we show below that it is unitary)

S : V̂0 → L2
2π : AΦ 7→ A.

Note SV̂0 = L2
2π. Instead of computing Ŵ−1 directly, we compute S(Ŵ−1) first, i.e. the

orthogonal complement of S(V̂−1) in L2
2π.

Lemma 5.9.2. S is a unitary operator.

Proof. It holds for any f ∈ V0 that F = AΦ and that

‖F‖2L2(R) =
1√
2π

∫

R

|F (ω)|2dω =
1√
2π

∫

R

|Af (ω)|2|Φ(ω)|2dω

=
∑

k

1√
2π

∫ (k+1)2π

k2π

|Af (ω)|2|Φ(ω)|2dω

=
1√
2π

∫ 2π

0

|Af (ω)|2(
∑

k

|Φ(ω + 2kπ)|2)dω =
1

2π

∫ 2π

0

|Af (ω)|2dω = ‖Af‖2L2
2π
.

From (5.9) :
S(V̂−1) = {A(2ω)C(ω) : A ∈ L2

2π}
Let F ∈ L2

2π be in the orthogonal complement of S(V̂−1), then

∫ 2π

0

A(2ω)C(ω)F (ω)dω = 0, ∀A ∈ L2
2π.

Thus ∫ π

0

A(2ω)[C(ω)F (ω) + C(ω + π)F (ω + π)]dω = 0 , ∀A ∈ L2
2π

which implies
C(ω)F (ω) + C(ω + π)F (ω + π) = 0, ∀ω ∈ R.

This means that in C
2 the vector ~h = [C(ω) C(ω + π)] is orthogonal to the vector ~f =

[F (ω) F (ω + π)]:
~h~f ∗ = 0, ~h~h∗ = 1,

5.9. EXISTENCE OF THE WAVELET



5. MULTIRESOLUTION 74

∗ means complex conjugate transpose. It is clear that

F (ω) = C(ω + π)

F (ω + π) = −C(ω)

is a solution. More generally any solution is of the form

F (ω) = −β(ω)C(ω + π)

F (ω + π) = β(ω)C(ω).

For convenience, we choose β(ω) = α(ω)e−iω, because then

F (ω) = −α(ω)e−iωC(ω + π)

F (ω + π) = α(ω)eiωC(ω)

implies that α(ω) is π-periodic. Such a function can be written in terms of e−i2kω. Thus we
may choose

fk(ω) = −
√

2e−iωC(ω + π)e−2ikω, k ∈ Z

as a set of functions in S(Ŵ−1) that generates the whole space. These functions form an
orthonormal basis because (we denote by (·, ·) the inner product for π-periodic functions)
(fk, f`) = (fk−`, f0) and using |C(ω+π)|2 + |C(ω)|2 = 1 and noting that e−2ikω is π-periodic,
we get

(fk, f0) =
1

π

∫ 2π

0

e−2ikω|C(ω + π)|2dω

=
1

π

∫ π

0

e−2ikω[|C(ω + π)|2 + |C(ω)|2]dω

=
1

π

∫ π

0

e−2ikωdω

=
1

2π

∫ 2π

0

e−ikηdη

= δk

Taking the S−1 transform we find that

Ψ−1,k(ω) = −
√

2e−iωC(ω + π)Φ(ω)e−2kiω , k ∈ Z

is an orthonormal basis for Ŵ−1.
Choosing a function ψ ∈W0 with Fourier transform Ψ satisfying

Ψ(2ω) = D(ω)Φ(ω), D(ω) = −e−iωC(ω + π), (5.10)

we just found that
√

2Ψ(2ω)e−2kiω forms an orthonormal basis for Ŵ−1. Taking the inverse
Fourier transform reveals that ψ−1,k(t) = 1√

2
ψ( t

2
− k) forms an orthonormal basis for W−1.

Moreover, after rescaling, we find that ψ0k(t) = ψ(t− k) is an orthonormal basis for W0.
This concludes the proof of Theorem 5.9.1.
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Because eiωΨ(2ω) is the Fourier transform of 1
2
ψ( t+1

2
) and

−C(ω + π)Φ(ω) =
1

2

∑

k

(−1)k+1cke
ikωΦ(ω)

we get, after taking inverse Fourier transforms of (5.10)

1

2
ψ(
t+ 1

2
) =

1

2

∑

k

(−1)k+1ckϕ(t+ k)

or
ψ(t) =

∑

k

dkϕ(2t− k), dk = (−1)kc1−k.

It is not difficult to accept that

{ψnk(t) = 2n/2ψ(2nt− k) : k ∈ Z}

gives an orthonormal basis for Wn, and after taking the limit L2(R) =
⊕

nWn, we find that

{ψnk(t) = 2n/2ψ(2nt− k) : k, n ∈ Z}

forms an orthonormal wavelet basis for L2(R).

5.10 A more informal approach

Suppose we accept the following theorem

Theorem 5.10.1. Suppose that {ϕ(t − n)} forms an orthonormal basis for V0, then there
exists a function ψ such that {ψ(t− k)} forms an orthonormal basis for W0 = V1 	 V0.

Since ψ ∈ W0 ⊂ V1, there must exist dk such that

ψ(t) =
∑

k

dkϕ(2t− k).

After Fourier transform, this is Ψ(2ω) = D(ω)Φ(ω) where D(ω) = 1
2

∑
k dke

ikω.
Because W0 ⊥ V0, we have

0 =

∫
ψ(t)ϕ(t− k)dt

=

∫ (∑

n

d̄nϕ(2t− n)

)(
∑

m

cmϕ(2t− 2k −m)

)
dt

=
∑

n

∑

m

d̄ncm

∫
ϕ(2t− n)ϕ(2t− 2k −m)dt

5.10. A MORE INFORMAL APPROACH
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By orthogonality of the ϕ0k, this implies

∑

n

d̄ncn−2k = 0.

Similarly, by the orthogonality of the ψ0k, we get

∑

n

d̄ndn−2k = 2δk.

A solution for these equations is dk = (−1)kc̄1−k, as one can easily verify.
It then follows from

∑
k(−1)kck = 0, that also

∑
k dk = 0 and hence, using

∫
ϕ(t)dt =

θ = (2π)1/4, it follows that
∫
ψ(t)dt =

∑

k

dk

∫
ϕ(2t− k)dt = 0.

5.11 Summary

We summarize our results and use this occasion to switch to a different normalization.
Suppose we set

hk =
ck√
2

and gk =
dk√
2

then
√

2C(ω) = H(ω) = H(eiω) and
√

2D(ω) = G(ω) = G(eiω) where

H(ω) = H(eiω) =
∑

k

hke
−ikω and G(ω) = G(eiω) =

∑

k

gke
−ikω.

We had gk = (−1)kh̄1−k. Thus

Φ(2ω) = C(ω)Φ(ω) =
1√
2
H(ω)Φ(ω)

Ψ(2ω) = D(ω)Φ(ω) =
1√
2
G(ω)Φ(ω) and G(ω) = −e−iωH(ω + π),

so that

M(ω) =

[
H(ω) H(ω + π)
G(ω) G(ω + π)

]
=

[
H(ω) −e−iωG(ω)

G(ω) −e−iωH(ω)

]
. (5.11)

This matrix M is the continuous analog of the modulation matrix of a 2-channel filter bank
(see also in the next chapter).

Using orthogonality, it can be shown that MM
∗ = 2I: a relation which catches several

properties implied. For example |H(ω)|2 + |G(ω)|2 = 2 and G(ω)H(ω) = H(ω)G(ω) = 0. The
first relation is the continuous analog of (3.1) and it shows that H and G describe power
complementary filters (PCF). The second relation shows that these filters are orthogonal,
which is obvious because the filter H (see below) will give the Vk−1 part of the signal and
the filter G will give the Wk−1 part and these spaces are orthogonal.

5.11. SUMMARY
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As an exercise one can prove in analogy with the scaling function that one has

Ψ(ω) = D(ω/2)
∞∏

k=2

C(ω/2k),

and by the orthogonality of the ψ(t− k) we get

∑

k

|Ψ(ω + 2kπ)|2 =
1√
2π
,

implying that
|G(ω)|2 + |G(ω + π)|2 = 2, (5.12)

and by the orthogonality of ϕnk to ψml one gets

H(ω)G(−ω) + H(ω + π)G(−(ω + π)) = 0. (5.13)

In fact the last 2 equalities, together with (5.6) are equivalent with [M(ω)][M(ω)]∗ = 2I.
The relation with the previous chapter on filter banks is now obvious. Writing H(z) =

H(ω) and G(z) = G(ω) for z = eiω, the relations are identical. Indeed the relations (5.6),
(5.12), (5.13) become

H(z)H∗(z) +H(−z)H∗(−z) = 2

G(z)G∗(z) +G(−z)G∗(−z) = 2

H(z)G∗(z) +H(−z)G∗(−z) = 0

showing that

M(z) =

[
H(z) H(−z)
G(z) G(−z)

]

satisfies M(z)M∗(z) = 2I, which corresponds to a paraunitary filter bank. We shall come
back to this later.

5.12 Exercises

1. Prove that the hat function is the convolution of the box function with itself, hence that
its Fourier transform is the square of the Fourier is the box function. The hat function
is a piecewise linear polynomial, i.e., a spline of order 1. This is a way to construct
polynomial B-splines. A polynomial B-spline of order p is a convolution of p + 1 box
functions. Therefore, if Φ(ω) is the Fourier transform of the box function, then Φ(ω)2

is the Fourier transform of the hat function and Φ(ω)4 is the Fourier transform of the
cubic B-spline, etc.

2. Prove that C(ω) = 2 for |ω| ≤ π/2 and Φ(ω) = 0 for |ω| > π/ is the Fourier transform
of the sequence c = (ck) wit c0 = 1, c2k = 0, and c2k+1 = (−1)k 2

(2k+1)π
.

3. Check that the hat function is not orthogonal to its integer translates.

5.12. EXERCISES
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4. Show that the piecewise linear wavelet of Example 5.8.2 is not orthogonal to its integer
translates.

5. Fill in details of the proof of Theorem 5.8.1.

6. If ψ(t) ∈ L2(R) is the inverse Fourier transform of Ψ(ω), prove that the inverse Fourier
transform of

√
2Ψ(2ω)e−i2kω is equal to 1√

2
ψ( t

2
− k).

7. Let ϕ ∈ L2(R). Prove that the following two conditions are equivalent

(a) {ϕ(· − k) : k ∈ Z} satisfies the Riesz condition that for any c = (ck) ∈ `2(Z), we
have

A‖c‖2`2(Z) ≤
∥∥∥∥∥
∑

k∈Z

ckϕ(· − k)
∥∥∥∥∥

2

L2(R)

≤ B‖c‖2`2(Z).

(b) The Fourier transform Φ of ϕ satisfies

A ≤
∑

k∈Z

|Φ(ω + 2kπ)|2 ≤ B a.e.

Hint: The middle term in the first inequality is by Parseval ‖C(ω)Φ(ω)‖2L2(R), C(ω) =

F(c). Rewrite this as
1√
2π

∫ π

−π
|C(ω)|2K(ω)dω

where K(ω) =
∑

k |Φ(ω + 2kπ)|2. Hence the first inequality is equivalent with

A ≤ 1√
2π

∫ π

−π
g(ω)K(ω)dω ≤ B, g(ω) =

|C(ω)|2
‖c‖`2(Z)

.

Now prove that this is equivalent with the second inequality.

8. Consider R
2 with the standard inner product: 〈u, v〉 = u1v1 + u2v2. Let L2 be the

space of real valued functions for which the inner product is 〈f, g〉 =
∑3

k=1 f(k)g(k).
It is isomorphic to R

3. Define the vectors e = {ei}3i=1 in R
2 as e1 = (1, 0), e2 = (0, 1),

e3 = (a, b) with a, b ∈ R. The analysis operator is T : R
2 → R

3 : u 7→ v = (〈u, ei〉)3
i=1.

What is the matrix representing T w.r.t. the standard basis? Prove that G = T ∗T =∑3
k=1 eke

∗
k. Show that ‖Tu‖2

R3 = ‖u‖2
R2+| 〈e3, u〉R2 |2 and hence that ‖u‖2

R2 ≤ ‖Tu‖2R3 ≤
(1 + ‖e3‖2R2)‖u‖2R2 . This proves that e is a frame. What are the frame bounds?

9. If {uk} and {vk} are two orthonormal bases, prove that {uk, vk} forms a tight frame.
What is the frame bound?

10. Prove that by adding the zero vector to a frame one gets a new frame with the same
frame bounds.

11. Prove that a tight frame is an orthonoral basis if it consists of normalized vectors and
if the frame bound is 1.
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12. Consider in R
2 the 3 vectors e1 = (0, 1), e2 = (

√
3/2,−1/2) and e3 = (−

√
3/2,−1/2).

They are all of length 1 and they are at angles 2π/3. If for a vector v ∈ R
2, one

computes the coefficients ak = 〈ek, v〉, k = 1, 2, 3, (in the natural Euclidean inner
product), How can v be reconstructed from the numbers (a1, a2, a3)?

13. In the Shannon sampling theorem, show that the functions sincωm(t − nT ) forms an
orthogonal basis when ωs = 2ωm. When ωs > 2ωm, then these functions are redundant.
They form a frame. Introduce the redundancy factor R as

R =
π

ωmT
=

ωs
2ωm

> 1, where T =
2π

ωs
.

Then it can be shown that by restricting the sinc functions to the bandwidth, then

f(t) =
1

R

∑
f(nT ) sinc[

π

RT
(t− nT )].

The functions sinc[ π
RT

(t− nT )] are redundant. Show that they form a tight frame.

14. If ϕ1 is a solution of a dilation equation with coefficients c1 and ϕ2 is a solution of
a dilation equation with coefficients c2, Prove that ϕ1 ∗ ϕ2 is a silution of a dilation
equation with coefficients c1 ∗ c2.

15. Work out example 5.6.8. Write a matlab program and observe the kind of convergence
you get.

16. Check the wavelet functions ψ given in the examples of Section 5.8.

17. Work out the proof of Theorem 5.8.1.
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Chapter 6

Wavelet transform and filter banks

To come to the wavelet transform, we should be able to decompose fn ∈ Vn = Vn−1 ⊕Wn−1

into its components fn−1 ∈ Vn−1 and gn−1 ∈ Wn−1. Thus we should be able to transform the
scaling coefficients vnk in the expansion of

fn =
∑

k

vnkϕnk ∈ Vn = Vn−1 ⊕Wn−1

into the scaling coefficients vn−1,k and wavelet coefficients wn−1,k such that

fn−1 =
∑

k

vn−1,kϕn−1,k ∈ Vn−1 and gn−1 =
∑

k

wn−1,kψn−1,k ∈ Wn−1.

This corresponds to a basis transformation in Vn: we change from the basis {ϕnk}k to the
basis {ϕn−1,k}k ∪ {ψn−1,k}k.

This will be equivalent with the analysis part of a (2-channel) filter bank. The inverse
transform should do the opposite and this corresponds to the synthesis part of the filter
bank.

We shall first describe this in the continuous case for signals in L2(R).

6.1 Wavelet expansion and filtering

Let fn be in Vn. Because Vn = Vn−1 ⊕Wn−1, we can decompose fn uniquely as

fn = fn−1 + gn−1 with fn−1 ∈ Vn−1, gn−1 ∈ Wn−1.

If we repeat this, then

fn = gn−1 + gn−2 + · · ·+ gn−m + fn−m, fj ∈ Vj, gj ∈ Wj.

The integer m is large enough when fn−m is sufficiently “blurred”.
Now suppose that

fj(t) =
∑

k

vjkϕjk(t), vj = (vjk) ∈ `2(Z)

gj(t) =
∑

k

wjkψjk(t), wj = (wjk) ∈ `2(Z)

80
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The decomposition algorithm will decompose vn into vn−1 and wn−1, then vn−1 again into
vn−2 and wn−2 etc. We have a recursive filter bank like in Figure 4.4. The decomposition
is given in Figure 6.1. When we want to reconstruct the pn, the algorithm should perform

Figure 6.1: The decomposition scheme
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Figure 6.2: The reconstruction scheme
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operations represented schematically in Figure 6.2. The purpose of this section is to find vn−1

and wn−1 from vn (decomposition) and to recover vn from vn−1 and wn−1 (reconstruction).
We recall that hk = ck/

√
2 and gk = dk/

√
2 so that

Φ(2ω) =
1√
2
H(ω)Φ(ω), H(ω) =

∑

k

hke
−ikω

Ψ(2ω) =
1√
2
G(ω)Φ(ω), G(ω) =

∑

k

gke
−ikω

with gk = (−1)kh1−k so that G(ω) = −e−iωH(ω + π). Moreover Vn = span{ϕnk : k ∈ Z} and
Wn = span{ψnk : k ∈ Z} where the

ϕnk(t) = 2n/2ϕ(2nt− k), ψnk(t) = 2n/2ψ(2nt− k)

6.1. WAVELET EXPANSION AND FILTERING
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are orthonormal bases. The projection Pn on Vn and Qn on Wn are given by

Pnf =
∑

k

vnk(f)ϕnk, vnk(f) = 〈ϕnk, f〉

Qnf =
∑

k

wnk(f)ψnk, wnk(f) = 〈ψnk, f〉 .

We want to relate vnk and wnk to vn+1,k. We first prove

Lemma 6.1.1. We have
ϕnk(t) =

∑

l

hl−2kϕn+1,l(t).

Proof. First note that

ϕ(
t

2
) =

∑

k

ckϕ(t− k).

Then

ϕnk(t) = 2n/2ϕ(2nt− k)
= 2n/2

∑

i

ciϕ(2n+1t− 2k − i)

=
1√
2

∑

i

ci2
(n+1)/2ϕ(2n+1t− (2k + i))

=
1√
2

∑

l

cl−2kϕn+1,l(t) =
∑

l

hl−2kϕn+1,l(t)

which proves the result.

From their definitions, it thus follows that

vnk =
∑

l

h̄l−2kvn+1,l

From our discussion of filter banks, it should be clear that this corresponds to applying a filter
with transfer function H∗(z) where H(z) =

∑
k hkz

k, followed by downsampling (compare

with the matrix (4.1)). If we denote this filter as H∗, and the combination ↓ H∗ as Ĥ∗, then
we have

vn = (↓ H∗) vn+1 = Ĥ∗vn+1.

We do something similar for the wnk :

Lemma 6.1.2. We have
ψnk =

∑

l

gl−2kϕn+1,l.

6.1. WAVELET EXPANSION AND FILTERING
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Proof. This is along the same lines as the previous one

ψnk(t) = 2n/2ψ(2nt− k)
= 2n/2

∑

j

djϕ(2n+1t− 2k − j)

=
1√
2

∑

j

dj2
(n+1)/2ϕ(2n+1t− (2k + j))

=
1√
2

∑

l

dl−2kϕn+1,l(t) =
∑

l

gl−2kϕn+1,l(t).

Defining the filter G∗ with transfer function G∗(z) where G(z) =
∑

k gkz
k, then it follows

along the same lines as above that

wn = (↓ G∗) vn+1 = Ĝ∗vn+1.

For the reconstruction we can easily prove that

Lemma 6.1.3. The following relations hold

〈ϕn+1,k, ϕnl〉L2(R) = hk−2l

〈ϕn+1,k, ψnl〉L2(R) = gk−2l.

Proof. Also this one is trivial. For example from

ϕnl(t) =
∑

j

hj−2lϕn+1,j(t)

we find that
〈ϕn+1,k, ϕnl〉L2(R) = hk−2l.

We can therefore express vn+1 in terms of vn and wn as follows.

vn+1,k = 〈ϕn+1,k, f〉`2(Z)

= 〈ϕn+1,k, Pn+1f〉`2(Z)

= 〈ϕn+1,k, Pnf +Qnf〉`2(Z)

=

〈
ϕn+1,k,

∑

l

vnlϕnl

〉

`2(Z)

+

〈
ϕn+1,l,

∑

l

wnlψnl

〉

`2(Z)

=
∑

l

hk−2lvnl +
∑

l

gk−2lwnl.

Thus
vn+1 = (H ↑)vn + (G ↑)wn = Ĥvn + Ĝwn.

6.1. WAVELET EXPANSION AND FILTERING
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Here H and G are the filters with transfer function H(z) and G(z) respectively and Ĥ = H ↑
and Ĝ = G ↑.

Note: The notation with a superstar (which means adjoint) is justified as follows. If F
is an operator (filter) on `2, then the adjoint F ∗ : `2 → `2 is defined by

〈Fa, b〉`2(Z) = 〈a,F∗b〉`2(Z)

The matrix representation of the adjoint operator is the Hermitian conjugate of the matrix
representation of the operator. Recall also that the adjoint of ↓ is ↑, so that the adjoint of
↓ F is F∗ ↑. Also, note that the adjoint of F with transfer function F (z) =

∑
k fkz

−k is the
operator F∗ with transfer function F∗(z). A combination of these observations shows that
Ĥ∗ = (H ↑)∗ is indeed the adjoint of Ĥ = H ↓ and the same holds for Ĝ.

We can use the conditions on the ck we have found before to see that Ĥ∗Ĥ = Ĝ∗Ĝ = I
(the identity) and ĤĜ∗ = ĜĤ∗ = O (the zero operator). Somewhat more difficult is to show
that Ĥ∗Ĥ + Ĝ∗Ĝ = I. Thus with K̂∗ = [Ĥ∗ Ĝ∗], we have K̂K̂∗ = I and K̂∗K̂ = I.

6.2 Filter bank interpretation

We can interpret the previous decomposition and reconstruction as a 2-channel orthogonal
filter bank.

We first recall that the matrix representation of the filter Ĥ∗ is given by

H∗ =




. . .

· · · h̄−1 h̄0 h̄1 h̄2 · · ·
· · · h̄−2 h̄−1 h̄0 h̄1 · · ·

· · · h̄−3 h̄−2 h̄−1 h̄0 · · ·
. . .




(the framed element is the (0,0) entry). It corresponds to application of a filter with transfer
function H∗(z) =

∑
k hkz

k followed by decimation with a factor 2. Note that for z = eiω,

this is related to the function C(ω) of the multiresolution analysis by H∗(z) =
√

2 C(ω).
Similarly, the application of the filter Ĝ corresponds to an application of a filter with

transfer function G∗(z) =
∑

k gkz
k, followed by a decimation. Also G∗(z) =

√
2 D(ω) for

z = eiω.
The relation gk = (−1)kh̄1−k immediately shows that the impulse responses h = (hk)

and g = (gk) are orthogonal: 〈h, g〉`2(Z) = 0. More generally, it is easily checked that h is

orthogonal to all the even translates of g:
〈
h,D2kg

〉
`2(Z)

= 0. This means that H∗G = 0. It

also implies that we could as well have chosen gk = (−1)kh̄N−k and still have orthogonality,
as long as N is odd. The only essential thing is that the signs alternate and that the
order of the filter coefficients is flipped and conjugated, then they can be shifted over any
odd number of samples. We recognise this as the alternating flip relation. Note that a
FIR filter with coefficients h̄0, h̄1, h̄2, . . . , h̄N is orthogonal to the FIR filter with coefficients
hN ,−hN−1, hN−2, . . . ,−h0 for N odd (see Corollary 5.7.9).

6.2. FILTER BANK INTERPRETATION
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By (5.7), h and its even translates, are orthonormal:
〈
h,D2kh

〉
`2(Z)

= δk. This is called

double shift orthogonality and it corresponds to the fact that HH∗ = I. Similarly GG∗ = I.
In a completely analogous way, it is seen on the synthesis side that the filterH corresponds

to an upsampling by a factor of 2 followed by application of the filter with transfer function
H(z) =

∑
hkz

−k while application of G corresponds to an upsampling followed by application
of the filter with transfer function G(z) =

∑
gkz

−k.
This places the previous section in the context of a 2-channel filter bank. Writing down

the modulation matrix (compare with (5.11))

M(z) =

[
H(z) H(−z)
G(z) G(−z)

]

and using the relation G(z) = −z−1H∗(−z) (compare with D(ω) = −e−iωC(ω + π) of the
multiresolution analysis) it is easily shown that M∗(z)M(z) = 2I: we have a paraunitary
filter bank and we have perfect reconstruction.

The double shift orthogonality condition
∑

n hnhn−2k = δk or equivalently H∗H = I was
derived from the orthogonality of the ϕ(x − k) and by the choice gn = (−1)nh̄1−n it also
implies the orthogonality of the ψ(x − k) i.e., G∗G = I. One may check that for all the
simple examples we have seen whether this condition is satisfied. The box function and D2

are the only ones which satisfy them.
The box function was the first known (orthogonal) scaling father function. Excluding

the delta function, we find that none of the other examples (except D2) satisfies the above
condition and hence none of them is guaranteed to generate wavelets orthogonal to their
translates.

6.3 Fast Wavelet Transform

We describe here the Fast Wavelet Transform (FWT) which is a method to compute the
Discrete Wavelet transform (DWT) just like the Fast Fourier Transform (FFT) is a method
to compute the Discrete Fourier Transform (DFT).

We suppose in the rest of this chapter that we work with real data and real filters. For
this section we also assume that we work with orthogonal compactly supported wavelets, i.e.
hk = 0 for k < 0 and k ≥ 2N and the coefficients hk are real.
We want to invert the relation

vn+1 = [Ĥ Ĝ]
[
vn
wn

]

which is done by [
Ĥ∗

Ĝ∗
]
vn+1 =

[
vn
wn

]

In general the matrices corresponding to Ĥ and Ĝ are infinite dimensional. However, for
practical reasons we work with discrete data vectors of finite length M = 2K . The operators
for analysis and synthesis as described above in terms of the filters Ĥ and Ĝ will transform
vectors of length 2K into vectors of the same length by multiplication with a 2K×2K matrix.
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In DFT, this transform can be made fast (FFT) because the transformation is repre-
sented as a product of sparse elementary matrices. Moreover, the transformation matrix is
orthogonal, so that its inverse is just equal to its transpose. This matrix is made orthogonal
by choosing the unit vectors as basis in the “time” domain and the sines/cosines as basis in
the frequency domain.

A similar observation holds if we want to generate a Fast Wavelet Transform (FWT) for
the DWT.

For finite dimensional data, we shall have to truncate the infinite dimensional matrices.
So for M = 2K we make H∗, G∗ of dimension 2K−1 × 2K . E.g., for K = 3 and N = 2

H∗ =




h0 h1 h2 h3

h0 h1 h2 h3

h0 h1 h2 h3

h0 h1


 ;G∗ =




h3 −h2 h1 −h0

h3 −h2 h1 −h0

h3 −h2 h1 −h0

h3 −h2




However this will cause some edge effects (orthogonality is lost). Therefore we suppose that
the data are periodically extended, which amounts to reenter cyclically the data in H that
were chopped off (a similar technique is used in DFT). So instead of the previous H∗ and
G∗ for K = 3 and N = 2, we use the matrices

H∗ =




h0 h1 h2 h3

h0 h1 h2 h3

h0 h1 h2 h3

h2 h3 h0 h1


 ;G∗ =




h3 −h2 h1 −h0

h3 −h2 h1 −h0

h3 −h2 h1 −h0

h1 −h0 h3 −h2




Now G and H are “orthogonal” again in the sense HH∗ = I, GG∗ = I and HG∗ = GH∗ = 0.
Thus, with K∗ = [H∗ G∗]: KK∗ = K∗K = I.

Suppose we have a data vector v = (vl)
2K−1
l=0 of length 2K . We can write it in terms of 2K

basis vectors ϕ0k

v =
2K−1∑

k=0

vk0ϕ0k

with coefficient vector v = [v00, . . . , v2K−1,0]
t, where

vk0 = 〈v, ϕ0k〉 = vtϕ0k =
2K−1∑

l=0

vlϕ0k(l).

The expansion thus has to be understood as



v0

v1
...

v2K−1


 =

2K−1∑

k=0

vk0




ϕ0k(0)
ϕ0k(1)

...
ϕ0k(2

K − 1)




E.g., consider v = [9 1 2 0]t, i.e., K = 2 and use the Haar wavelet, thus h0 = h1 = 1√
2

and all

other hk are zero. Hence ϕ = (δl)
2K−1
l=0 is the first unit vector and ϕ0k is the kth unit vector.
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Note that ϕ0l(k) = δk−l and thus vk0 = 〈v, ϕ0k〉 = vk.

v = 9




ϕ00(0)
ϕ00(1)
ϕ00(2)
ϕ00(3)


+ 1




ϕ01(0)
ϕ01(1)
ϕ01(2)
ϕ01(3)


+ 2




ϕ02(0)
ϕ02(1)
ϕ02(2)
ϕ02(3)


+ 0




ϕ03(0)
ϕ03(1)
ϕ03(2)
ϕ03(3)


 .

We can also expand it in terms of

ϕ−1,k and ψ−1,k , k = 0, 1, . . . , 2K−1 − 1

with coefficients v1 = (vk1) and w1 = (wk1) given by

vk1 = 〈v, ϕ−1,k〉 , wk1 = 〈v, ψ−1,k〉 .

We could directly compute them by evaluating the inner products. However, by our previous
analysis, we can also find them as

[
v1

w1

]
=

[
H∗
K

G∗
K

]
v0.

For our previous example,

H∗
2 =

[
h0 h1

h0 h1

]
; G∗

2 =

[
h1 −h0

h1 −h0

]

so that 


v01

v11

w01

w11


 =

1√
2




1 1
1 1

1 −1
1 −1







9
1
2
0


 =

1√
2




10
2
8
2




and we can check that this gives indeed the correct decomposition

v =
10√

2




ϕ−1,0(0)
ϕ−1,0(1)
ϕ−1,0(2)
ϕ−1,0(3)


+

2√
2




ϕ−1,1(0)
ϕ−1,1(1)
ϕ−1,1(2)
ϕ−1,1(3)


+

8√
2




ψ−1,0(0)
ψ−1,0(1)
ψ−1,0(2)
ψ−1,0(3)


+

2√
2




ψ−1,1(0)
ψ−1,1(1)
ψ−1,1(2)
ψ−1,1(3)




=
10

2




1
1
0
0


+

2

2




0
0
1
1


+

8

2




1
−1

0
0


+

2

2




0
0
1
−1


 =




9
1
2
0


 .

The first and second term, are the components of v along ϕ−1,0 and ϕ−1,1. Together they
form the part of v that is in V−1. This can again be partitioned and written in terms of

ϕ−2,k and ψ−2,k , k = 0, 1, . . . , 2K−2 − 1

6.3. FAST WAVELET TRANSFORM



6. WAVELET TRANSFORM AND FILTER BANKS 88

which in our example is

ϕ−2,0 and ψ−2,0 → coefficients v02 and w02.

This is for our example given by

[
v02

w02

]
=

[
H∗

1

G∗
1

] [
v01

v11

]
=

[
h0 h1

h1 −h0

] [
v01

v11

]

thus, explicitly [
v02

w02

]
=

1√
2

[
1 1
1 −1

]
1√
2

[
10
2

]
=

[
6
4

]

and indeed



5
5
1
1


 = 6




ϕ−2,0(0)
ϕ−2,0(1)
ϕ−2,0(2)
ϕ−2,0(3)


+ 4




ψ−2,0(0)
ψ−2,0(1)
ψ−2,0(2)
ψ−2,0(3)


 =

6

2




1
1
1
1


+

4

2




1
1
−1
−1




is equal to the sum of the first two terms in the previous decomposition. Thus we have
written v as

v = 6ϕ−2,0 + 4ψ−2,0 +
8√
2
ψ−1,0 +

2√
2
ψ−1,1

= 6




1/2
1/2
1/2
1/2


+ 4




1/2
1/2
−1/2
−1/2


+

8√
2




1/
√

2

−1/
√

2
0
0


+

2√
2




0
0

1/
√

2

−1/
√

2




Note that in this simple example we didn’t need the wrap around of the H and G matrix.
The two transformations together give the result [v02 w02 w01 w11]

t in terms of [v00 v10 v20 v30]
t

as



v02

w02

w01

w11


 =

1√
2




1 1
1 −1 √

2 √
2




1√
2




1 1
1 1

1 −1
1 −1







v00

v10

v20

v30




=
1

2




1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2







9
1
2
0


 =




6
4

8/
√

2

2/
√

2



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6.4 Wavelets by linear algebra

The filters (matrices) G∗ and H∗ are often intertwined to give a matrix like e.g.

T∗ =




h0 h1 h2 h3

h3 −h2 h1 −h0

h0 h1 h2 h3

h3 −h2 h1 −h0

. . .

h0 h1 h2 h3

h3 −h2 h1 −h0

h2 h3 h0 h1

h1 −h0 h3 −h2




(6.1)

Assume for simplicity that the filter coefficients are real. If this matrix has to be orthogonal,
(expressing H∗H = I, G∗G = I, and H∗G = 0) then, multiplying it with its transpose
should give the identity.
This results for our example in only two independent relations

{
h2

0 + h2
1 + h2

2 + h2
3 = 1

h2h0 + h3h1 = 0

If we require in addition the approximation to be of order1 2, then we require additionally
{
h0 − h1 + h2 − h3 = 0 (H(π) = 0)
0h0 − h1 + 2h2 − 3h3 = 0 (H′(π) = 0)

A solution of these 4 equations is given by

h0 =
1 +
√

3

4
√

2
, h1 =

3 +
√

3

4
√

2

h2 =
3−
√

3

4
√

2
, h3 =

1−
√

3

4
√

2

which is Daubechies D2.
When similarly introducing 6 coefficients h0, . . . , h5, the orthogonality requirement gives 3
conditions, so that we can require the order to be 3 giving 3 more conditions.
A solution is given by D3:

h0 =
(1 +

√
10 +

√
5 + 2

√
10)

16
√

2
, h1 =

5 +
√

10 + 3
√

5 + 2
√

10

16
√

2

h2 =
10− 2

√
10 + 2

√
5 + 2

√
10

16
√

2
, h3 =

10− 2
√

10 + 2
√

5 + 2
√

10

16
√

2

h4 =
5 +
√

10− 3
√

5 + 2
√

10

16
√

2
, h5 =

1 +
√

10 +
√

5 + 2
√

10

16
√

2

One can check this as an exercise.
1This means that H(π) = H

′(π) = 0. The partition of unity requires H(π) = 0. The second condition is
a smoothness condition. The general notion of order will be explained in Section 7.1
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6.5 The wavelet crime

To move to practical computations, we shall assume that f(t) is given by a number of
samples. In practice there are a finite number, but for notational convenience, suppose that
we have a countable number of values

f(tk) = f(k∆t), k ∈ Z.

Assume that ∆t = 2−N so that tk = tNk = k∆t = k2−N . One could think that it is
sufficient to feed the sample values to the recursive filter bank. However, this assumes that
the function values are scaling coefficients (at level N), which is obviously not true. What
we should feed into the filter bank are the coefficients vNk which are the scaling coefficients
for the projection fN = PNf of f on VN :

fN(t) =
∑

k

vNkϕNk(t), vNk = 〈ϕ̃Nk, f〉 .

(Note: we used here the ϕ̃ for a biorthogonal basis – see next section. For the moment one
can think of ϕ̃ as being just ϕ.)
Replacing the coefficients vNk by samples of f is called the “wavelet crime” by G. Strang
[21].

On the other hand, assuming that N is large and hence the ϕNk and ϕ̃Nk have a verry
narrow support (say width ∆t centered at tNk), we can think of the vNk as (scaled) function
values fk. Indeed, since ‖ϕ̃Nk‖2 = 1√

2π

∫
|ϕ̃Nk(t)|2dt = 1 ≈ ∆t√

2π
|ϕ̃Nk(tNk)|2, we should

have |ϕ̃Nk(tNk)|2 ≈
√

2π/∆t or ϕ̃Nk(tNk) ≈ θ/
√

∆t with θ2 =
√

2π. So, replacing vNk by
(
√

∆t/θ)v̂Nk with v̂Nk = f(tNk) makes sense because

vNk = 〈ϕ̃Nk, f〉 =
1√
2π

∫
ϕ̃Nk(t)f(t)dt ≈

√
∆t

θ
f(tNk).

Hence

fN(t) ≈ f̂N(t) =
2−N/2

θ

∑

k

v̂NkϕNk(t) =
1

θ

∑

k

v̂Nkϕ(2N t− k), v̂Nk = f(tNk)

=
1

θ

∑

l

f(t− l∆t)ϕ(l).

Letting N → ∞, i.e., ∆t → 0 and knowing that
∑

l ϕ(l) = θ, we see that limN→∞ f̂N(t) =
f(t). However this convergence is slow, as one can see by a taylor series expansion of
f(t− l∆t) around t, this convergence is only O(∆t). It is therefore recommended to give as
input the coefficients v′Nk which are approximants for

vNk = 〈ϕ̃Nk, f〉 =
1√
2π

∫
f(t)2N/2ϕ̃(2N t− k)dt
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given by the Riemann sum

v′Nk =
1√
2π

∑

n

fn2
N/2ϕ̃(2Nn∆t− k)∆t, ∆t = 2−N

=
2−N/2√

2π

∑

n

fnϕ̃(n− k).

Thus the function values are convolved with the values {ϕ̃(−n)}, which is a low pass filtering
operation.

6.6 Biorthogonal wavelets

The orthogonality requirement of the wavelets is however rather restrictive.

Theorem 6.6.1. A symmetric FIR filter which is orthogonal can only have two nonzero
coefficients.

Proof. Consider for example the filter coefficients c = [h0 h1 h2 h2 h1 h0] with h0 6= 0.
Orthogonality to its even translates gives h1h0 = 0 (shift over 4 positions) and hence h1 = 0,
while also h2h0 = 0 (shift over 2 positions) so that also h2 = 0. This leaves us with
h = 1√

2
[1 0 0 1]. Similar derivations show that we can only have solutions of the form

h = 1√
2
[1 1], with possibly an even number of zeros in between. Thus essentially the Haar

wavelet is the only possible solution.

Only the Haar coefficients h = 1√
2
[1 1] will lead to orthogonal wavelets.

Orthogonality also restricts smoothness, because imposing orthogonality conditions, leaves
less freedom to impose conditions of the form H(π) = 0,H′(π) = 0,H′′(π) = 0, . . .. As will
be explained in Section 7.1, this corresponds to vanishing moments and to the smoothness
of the wavelets.

Therefore weaker forms exist, like e.g., biorthogonal wavelets. We say that in a Hilbert
space H the bases {ek}k and {ẽk}k are biorthogonal if 〈ek, ẽl〉H = δk−l, k, l ∈ Z. Note that
then for f ∈ H, we have two possible expansions:

f =
∑

n

anen, an = 〈ẽn, f〉H

f =
∑

n

ãnẽn, ãn = 〈en, f〉H

For biorthogonal wavelets, we have the functions ϕ and ψ which generate the bases {ϕnk}
and {ψnk} (these are used on the synthesis side), but we also need some dual functions ϕ̃ and
ψ̃ to generate the biorthogonal bases {ϕ̃nk} and {ψ̃nk} (used on the analysis side). These ϕ̃
and ψ̃ are defined by

ϕ̃(t) =
√

2
∑

k

h̃kϕ̃(2t− k) and ψ̃(t) =
√

2
∑

k

g̃kϕ̃(2t− k)
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or, taking Fourier transforms

Φ̃(2ω) =
1√
2
H̃(ω)Φ̃(ω) and Ψ̃(2ω) =

1√
2
G̃(ω)Φ̃(ω)

with
H̃(ω) =

∑

k

h̃ke
−ikω and G̃(ω) =

∑

k

g̃ke
−ikω.

It is now required that the following biorthogonality relations hold

〈ϕnk, ϕ̃nl〉L2(R) = δk−l, n, k, l ∈ Z and
〈
ψnk, ψ̃ml

〉
L2(R)

= δm−nδk−l, n,m, k, l ∈ Z

and 〈
ϕnk, ψ̃nl

〉
= 0 and 〈ϕ̃nk, ψnl〉 = 0, n, k, l ∈ Z.

Set
H̃(z) =

∑
k h̃kz

−k, G̃(z) =
∑

k g̃kz
−k,

H(z) =
∑

k hkz
−k, G(z) =

∑
k gkz

−k,

thus
H̃(eiω) = H̃(ω), H(eiω) = H(ω), G̃(eiω) = G̃(ω), and G(eiω) = G(ω).

Choosing H̃ and G and also G̃ and H as QMF by using (mixed) alternating flips

ḡn = (−1)nh̃1−n, g̃n = (−1)nh̄1−n. (6.2)

Then these conditions lead to the modulation matrix formulation

[
H(z) H(−z)
G(z) G(−z)

]t [
H̃∗(z) H̃∗(−z)
G̃∗(z) G̃∗(−z)

]
= 2

[
1 0
0 1

]
.

Thus the filter bank is PR.
In terms of filter coefficients we have the orthogonality conditions

∑

n

ḡng̃n−2k = δk and
∑

n

h̄nh̃n−2k = δk.

In fact only one of them is needed, the other follows by the alternating flips.
The relevant spaces are

Vn = span{ϕnk : k ∈ Z}, Ṽn = span{ϕ̃nk : k ∈ Z}
Wn = span{ψnk : k ∈ Z}, W̃n = span{ψ̃nk : k ∈ Z}.

We have
Vn ⊥ W̃n and Wn ⊥ Ṽn

for all n ∈ Z. Also
Vn ⊕Wn = Vn+1 and Ṽn ⊕ W̃n = Ṽn+1
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i.e., we have complementary spaces (direct sums), but they are not orthogonal complements
anymore.

The projection operators Pn on Vn and Qn on Wn are given by

Pnf(t) =
∑

k

〈ϕ̃nk, f〉ϕnk(t) =
∑

k

vnkϕnk(t)

and
Qnf(t) =

∑

k

〈
ψ̃nk, f

〉
ψnk(t) =

∑

k

wnkψnk(t).

Analysis and reconstruction formulas are

[
vn
wn

]
=

[ ̂̃H
∗

̂̃G
∗

]
vn+1 and vn+1 = [Ĥ Ĝ]

[
vn
wn

]
.

As before ̂̃H = H̃ ↑ and ̂̃G = G̃ ↑ while Ĥ = H ↑ and Ĝ = G ↑. Note that in this biorthogonal
scheme, the projections on the analysis side are onto the spaces Vn and Wn, spanned by the
primal functions ϕnk and ψnk. However the coefficients are computed as inner products with
ϕ̃nk and ψ̃nk and thus one should use the filters H̃ and G̃ on the analysis side.

These formulas can be easily put into an algorithm. The following algorithms can be
found in [13]. We suppose that all the coefficients are real and that ck and c̃k are nonzero for
−L ≤ k ≤ L and that the d̃k and dk are nonzero for −M ≤ k ≤M . Moreover, suppose that
L = 2L′ + 1 and M = 2M ′ + 1 are odd. The “signal” is given as a vector of 2K coefficients
vn,k, k = 0, . . . , 2K − 1.

The analysis is the result of the following DWT algorithm.

for n = K − 1(−1)0
for k = 0(1)2n − 1

vnk =
L∑

i=−L

h̃ivn+1,(i+2k) mod 2n+1

wnk =
M∑

i=−M

g̃ivn+1,(i+2k) mod 2n+1

endfor
endfor

The inverse DWT is given by the following reconstruction algorithm
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for n = 1(1)K
for k = 0(1)2n − 1

if k even then

vnk =
L′∑

i=−L′

h2ivn−1,(k/2−i) mod 2n−1

+
M ′∑

i=−M ′

g2iwn−1,(k/2−i) mod 2n−1

else k odd

vnk =
L′∑

i=−L′−1

h2i+1vn−1,((k−1)/2−i) mod 2n−1

+
M ′∑

i=−M ′−1

g2i+1wn−1,((k−1)/2−i) mod 2n−1

endif
endfor

endfor

To conclude we mention the following theorem about the support of biorthogonal wavelets.

Theorem 6.6.2. [7] If

H(z) =

N2∑

k=N1

hkz
k and H̃(z) =

Ñ2∑

k=Ñ1

h̃kz
k,

hN1
6= 0 6= hN2

, and h̃Ñ1
6= 0 6= h̃Ñ2

, then

supp(ϕ) = [N1, N2], supp(ϕ̃) = [Ñ1, Ñ2],

and

supp(ψ) = [
1

2
(N1− Ñ2 +1),

1

2
(N2− Ñ1 +1)], supp(ψ̃) = [

1

2
(Ñ1−N2 +1),

1

2
(Ñ2−N1 +1)].

6.7 Semi-orthogonal wavelets

In the biorthogonal case we had the different spaces

Vn = span{ϕnk : k ∈ Z}, Ṽn = span{ϕ̃nk : k ∈ Z}
Wn = span{ψnk : k ∈ Z}, W̃n = span{ψ̃nk : k ∈ Z}.

However, it may happen that V0 = Ṽ0, without ϕ and ϕ̃ being the same. In that case we
have Vn = Ṽn for all n and because Vn ⊥ W̃n and Ṽn ⊥ Wn, we also have Wn = W̃n for all
n. In that case we do have an orthogonal multiresolution analysis, but the basis functions
are not orthogonal. They are called semi-orthogonal in that case. We still have Wj ⊥ Wi for
i 6= j, it follows that ψjk ⊥ ψil for i 6= j, but orthogonality in the same resolution level may
not hold.

6.7. SEMI-ORTHOGONAL WAVELETS
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6.8 Multiwavelets

More freedom can also be introduced by having Vn generated by the translations of not
just one scaling function, but by the translates of two or more scaling functions. Thus one
may consider an R-vector of scaling functions ϕ(t)T = [ϕ1(t), . . . , ϕR(t)] and we then set
Vn = spank{ϕr,n,k : r = 1, . . . , R} where ϕr,n,k(t) = 2n/2ϕr(2

nt− k).

Example 6.8.1. A very simple example is given by the 2 scaling functions shown in Figure
6.3 The first ϕ1 is the Haar scaling function. For the second, one can check that

Figure 6.3: Example of multiwavelet scaling functions

ϕ1(t)

1

1

√
3

ϕ2(t)

−
√

3

ϕ2(t) =

√
3

2
ϕ1(2t) +

1

2
ϕ2(2t)−

√
3

2
ϕ1(2t− 1) +

1

2
ϕ2(2t− 1).

So we have
[
ϕ1(t)
ϕ2(t)

]
=

[
1 0√
3/2 1/2

] [
ϕ1(2t)
ϕ2(2t)

]
+

[
1 0

−
√

3/2 1/2

] [
ϕ1(2t− 1)
ϕ2(2t− 1)

]
.

3

In general we have for multiwavelets a matrix version of the dilation equation:

ϕ(t) =
√

2
∑

k

hkϕ(2t− k)

where ϕ(t) is a 2× 1 vector and the hk are 2× 2 matrices.
For the complementary wavelet spaces Wn = Vn+1 	 Vn = spank{ψr,n,k : r = 1, . . . , R}

with ψr,n,k(t) = 2n/2ψ(2nt− k). The multiwavelet ψ(t) = [ψ1, . . . , ψR]T satisfies an equation
of the form (R = 1)

ψ(t) =
√

2
∑

k

gkψ(2t− k)

6.8. MULTIWAVELETS
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where ψ(t) is a 2 × 1 vector and the gk are 2 × 2 matrices. The basics of the whole theory
can be repeated for this matrix-vector generalization. For example a necessary (but not
sufficient) condition for orthogonality is expressed by equations

H(ω)H(ω)∗ + H(ω + π)H(ω + π)∗ = IR

G(ω)G(ω)∗ + G(ω + π)G(ω + π)∗ = IR

H(ω)G(ω)∗ + H(ω + π)G(ω + π)∗ = 0R

where H(ω) =
∑

k hke
iωk and G(ω) =

∑
k gke

iωk. However, the relation between hk and gk
is now more complicated than taking an alternating flip. On the other hand, this leaves us
more freedom to design wavelets, even if the scaling functions are already fixed.

In general, there is no straightforward relation between the number of nonzero coefficients
hk and gk and the support of the multiwavelets.

Derive a FWT algorithm for multiwavelets as an exercise.

6.9 Exercises

1. Prove that if H represents a filter operator, ↓ is a downsampling operator, and ↑
the corresponding upsampling operator, then the adjoint operator (H ↑)∗ is given by
Ĥ∗ =↓ H∗.

2. Derive the filter coefficients for the Daubechies wavelets given in section 6.4.

3. Prove Theorem 6.6.2.

4. For orthogonal multiwavelets ψ and scaling functions ϕ, define

vr,n,k = 〈ϕr,n,k, f〉 , wr,n,k = 〈ψr,n,k, f〉

and set
vnk = [v1,n,k, . . . , vR,n,k]

T , wnk = [w1,n,k, . . . , wR,n,k]
T .

Prove that
vn,k =

∑

l

h∗l−2kvn+1,l, wn,k =
∑

j

g∗l−2kvn+1,l,

and
vn+1,k =

∑

j

(hk−2lvn,l + gk−2lwnl).

5. (Wavelet crime) Prove that vNk = (2−N/2/ 4
√

2π)v̂Nk + O(2−3N/2) where vN,k =
〈f, ϕ̃Nk〉 and v̂Nk = f(2−Nk).
Hint: Therefore write first

vNk =
2−N/2√

2π

∫

R

ϕ̃(t)f(2−N(t+ k))dt.

Next expand f(2−N(t+ k)) in a Taylor series at the point tNk = 2−Nk.

6.9. EXERCISES



Chapter 7

Approximating properties and
wavelet design

7.1 Smoothness

The condition
∑

n(−1)nhn = 0 ensured that H(π) = 0. This is a special case of a set of more
general conditions which require H(ω) to have a zero of order p − 1 at ω = π. This would
give ∑

n

(−1)nnkhn = 0 , k = 0, 1, . . . , p− 1.

One can show that for the box function p = 1, for the hat function p = 2 and for D2,
p = 2. The quadratic spline has p = 3, the cubic spline p = 4.

What do such conditions mean and where do they come from? We consider the biorthog-
onal case. We say that a multiresolution analysis {Vn} is of order p or it has p vanishing
moments if tk ∈ V0 for k = 0, . . . , p − 1. We first note that tk ∈ V0 implies that tk ∈ Vj for
all j ∈ Z. Indeed, tk ∈ V0 ⇔ (2jt)k ∈ Vj. Since Vj is a linear space, tk = 2−jk(2jt)k ∈ Vj.
The following lemma shows why the term “vanishing moments” is justified.

Lemma 7.1.1. If tk ∈ V0 then the kth derivative of the Fourier transform of ψ̃ vanishes at
the origin: Ψ̃(k)(0) = 0.

Proof. Because tk ∈ V0 ⊥ W̃0, we have
〈
tk, ψ̃

〉
= 0. Now the Fourier transform is

Ψ̃(ω) =
1√
2π

∫
ψ̃(t)e−iωtdt

so that the derivative is

Ψ̃(k)(ω) =
1√
2π

∫
ψ̃(t)(−it)ke−iωtdt = (−i)k 1√

2π

∫
ψ̃(t)tke−iωtdt

Therefore
∫
tkψ̃(t)dt = 0 is equivalent with Ψ̃(k)(0) = 0.

97
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Theorem 7.1.2. If the multiresolution analysis has order p > 0, then G̃(ω) has a zero of
order p − 1 at the origin and H(ω) has a zero of order p − 1 at π. Here G̃(ω) = G̃(e−iω) =∑

k g̃ke
ikω and H(ω) = H(eiω) =

∑
k hke

−ikω.

Proof. This follows from the dilation equation in the Fourier domain: Ψ̃(2ω) = 1√
2
G̃(ω)Φ̃(ω).

Differentiating p− 1 times and using Ψ̃(k)(0) = 0 for k = 0, . . . , p− 1 gives the result for G̃.
Next recall that G̃(ω) = −e−iωH(ω + π), so that by differentiating p− 1 times, the result

for H follows from the previous result for G̃.

By the previous result, it follows that we may write

H(ω) = H(eiω) =

(
1 + e−iω

2

)p
Q(ω).

Note also that in terms of the filter coefficients, H(k)(π) = 0 can be written as
∑

n(−1)nnkhn =
0.

So far we have only considered the MRA {Vj}, but one could make a similar discussion
for the MRA {Ṽj}. Also this may have a number of vanishing moments, say q, with q not
necessarily equal to p. It is then equivalent with G(ω) having a zero of order q at the origin
or also with H̃(ω) having a zero of order q at π.

7.2 Approximation

Let Pjf be the oblique projection of f ∈ L2 onto Vj, parallel to Ṽ ⊥
j , thus

Pjf(t) =
∑

k

〈ϕ̃jk, f〉ϕjk(t).

Note that this projection is only orthogonal if ϕ̃ = ϕ. One can prove (see [21])

Theorem 7.2.1. If H(ω) has a zero of order p in π and if f ∈ L2 is smooth enough (its pth
derivative f (p) is in L2), then there is some C > 0 such that

‖f − Pjf‖ ≤ C2−jp‖f (p)‖.

This theorem shows that wavelets as approximation tools are well suited for piecewise
smooth functions. Singularities in the higher derivatives are well localized in t at specific
resolution levels.

Moreover, the higher the order, the better their approximating abilities. These obser-
vations thus show that among the simple examples of wavelets, the splines are best in
approximating, but . . . they are not orthogonal! The wavelet D2 is as good as the linear
spline and it is orthogonal. Of course a sine/cosine system is also good in approximation and
it is orthogonal, but they do not have compact support as D2 has. Therefore D2 is in some
sense the simplest nontrivial compactly supported orthogonal wavelet one can imagine.

7.2. APPROXIMATION
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7.3 Design properties: overview

There are several properties for the design of a wavelet basis that one could want to be
fulfilled.

1. orthogonality: is sometimes too restrictive

2. compact support: defined by the length of the filters

3. rational coefficients: this might be an issue for hardware implementation

4. symmetry: The wavelet transform of the mirror of an image is not the mirror of the
wavelet transform, unless the wavelets are symmetric.

5. smoothness: determined by the number of primal or dual vanishing moments. The
primal vanishing moments determine the smoothness of the reconstruction. The dual
vanishing moments determine the convergence rate of the MRA projections and are
necessary to detect singularities.

6. interpolation: it may be required that some function values are exactly interpolated.

7.4 Some well known wavelets

In the next sections we discuss some of the most popular wavelets.

7.4.1 Haar wavelet

This has appeared several times in the text. Their properties are

1. orthogonal

2. compact support

3. the scaling function is symmetric

4. the wavelet function is anti-symmetric

5. it has only one vanishing moment (a minimum)

It is the only one which is compactly supported, orthogonal and has symmetry.

7.3. DESIGN PROPERTIES: OVERVIEW
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7.4.2 Shannon or sinc wavelet

Its Fourier transform H(ω) is

H(ω) =

{ √
2, |ω| < π/2

0, |ω| > π/2

This is an ideal low pass filter. This corresponds to (see example 5.6.13. We leave out the
factor

√
2π, which is only needed for normalization. Recall that the solution of the dilation

equation is only defined up to a multiplicative factor. See also Section 3.3.)

ϕ(t) =
sinπt

πt
.

The filter coefficients are

h0 =
1√
2
, h2n = 0, n 6= 0, h2n+1 =

(−1)n
√

2

(2n+ 1)π
.

The wavelet function is derived from the corresponding high pass filter

G(ω) =

{ √
2, |ω| > π/2

0, |ω| < π/2

The filter coefficients are now

g0 =
1√
2
, g2n = 0, n 6= 0, g2n+1 =

(−1)n+1
√

2

(2n+ 1)π
.

This leads to (exercise)

ψ(t) = 2ϕ(2t)− ϕ(t) =
sin 2πt− sinπt

πt
.

They are

1. orthogonal

2. symmetric scaling and wavelet function

3. infinite number of vanishing moments

4. infinite support and slowly decaying IIR-filters (non-causal)

7.4.3 Mexican hat function

This is a function used in CWT. It has the form (t2 − 1) exp(−1
2
t2) and has been discussed

in Example 5.3.1. It is the second derivative of the Gaussian. It satisfies the admissibility
condition and has two vanishing moments.

7.4. SOME WELL KNOWN WAVELETS
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Figure 7.1: Shannon scaling function and wavelet
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7.4.4 Morlet wavelet

This is another function used in CWT. It is a modulated Gaussian: ψ(t) = eiαte−t
2/2 dis-

cussed in Example 5.3.2. It satisfies the admissibility condition only approximately. However
if α > 5.5, the error can be neglected numerically.

7.4.5 Meyer wavelets

We will not discuss this in detail. Basically they are obtained as follows. For the sinc
wavelets, H(ω) was a block function. For the Meyer wavelets, this block function is smoothed.
Like in Figure 7.3.

They are

1. orthogonal

2. symmetric scaling and wavelet function

3. band limited

4. infinite support but faster decaying than sinc

5. infinitely many times differentiable

7.4.6 Daubechies maxflat wavelets

Here one looks for orthogonal filters with compact support. Let h0, . . . , h2p−1 be the nonzero
coefficients (recall that there has to be an even number of them). By normalization

∑
k hk =√

2. They should also satisfy the orthogonality condition (recall that this was realized by

7.4. SOME WELL KNOWN WAVELETS
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Figure 7.2: Meyer scaling function and wavelet
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Figure 7.3: Fourier transform of the low pass and high pass filters for the Meyer wavelet
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the double shift orthogonality)
∑

n h̄nhn−2k = δk. This gives only nontrivial equations for
k = 0, . . . , p − 1. Thus we have p conditions. The freedom that remains can be used to
generate vanishing moments H(i)(π) = 0 for i = 0, . . . , p − 1. Recall that H(π) = 0 is a
consequence of the orthogonality (partition of unity). For p = 2 we get the coefficients and
figures as in Example 5.6.7. See also Section 6.4 for the derivation and for the coefficients
in the case p = 3. The case p = 1 corresponds to the Haar wavelet. The functions become
smoother for higher p.

Figure 7.4: Daubechies maxflat scaling function and wavelet p = 4
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These wavelets have the following properties

1. orthogonal

2. compact support

3. there is no symmetry for p > 1

4. p vanishing moments

5. filter length is 2p

7.4.7 Symlets

The solution for the maxflat wavelets which was given by Daubechies is not always unique.
She gave solutions with minimal phase. This means that all the zeros of H(z) are inside the
unit disk. Other choices can lead to more symmetric solutions. They are never completely
symmetric though. Symlets have the following properties

1. orthogonal

7.4. SOME WELL KNOWN WAVELETS
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Figure 7.5: Symlet scaling function and wavelet p = 4
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2. compact support

3. filter length is 2p

4. ψ has p vanishing moments

5. ϕ is nearly linear phase

7.4.8 Coiflets

Consider a wavelet with p vanishing moments:
∫
tkψ(t)dt = 0, k = 0, . . . , p− 1.

On the other hand we know that
∫
ϕ(t)dt 6= 0, but if we require also

∫
tkϕ(t)dt = 0, k = 1, . . . , p− 1,

then we have for any polynomial P of degree at most p that

a0,k =

∫
P (t)ϕ(t− k) =

∫
P (u+ k)ϕ(u)du = P (k).

Thus, the projection

f̂N(t) =
∑

k

f(2−Nk)ϕ(2N t− k)

converges to f as fast as O(2−Np). Recall that in general, this was only O(2−N). These
extra conditions require more coefficients, so that we have less compact support. Properties
of Coiflets

7.4. SOME WELL KNOWN WAVELETS
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Figure 7.6: Coiflet scaling function and wavelet p = 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

1. orthogonal

2. compact support

3. filter length 6p

4. almost symmetric

5. ψ has 2p vanishing moments and ϕ has 2p− 1 vanishing moments

7.4.9 CDF or biorthogonal spline wavelets

The Cohen-Daubechies-Feauveau (CDF) [7] wavelets are biorthogonal wavelets for which a
number of moments are made zero:

H(k)(π) = 0, k = 0, . . . , p− 1 and H̃(k)(π) = 0, k = 0, . . . , q − 1

The larger p, the smoother ψ̃ and the larger q, the smoother ψ. A larger p implies more
filter coefficients hk, thus more filter coefficients g̃k, thus a larger support for the wavelet ψ̃,
while a larger q needs longer filters H̃ and G and a larger support of the wavelet ψ.

These wavelets are indicated by CDF(p, q). Again one can use linear algebra to find
the filter coefficients. Define a matrix T like in (6.1) and a similar one with tildes, then
biorthogonality requires that TT̃∗ = I. Like in the orthogonal case, this leads to a number
of biorthogonality relations for the filter coefficients, but because the h̃k and the hk are now
different, one has more freedom to impose smoothness conditions. The latter determine the
flatness of the wavelets at the end points of their support and they are sometimes called
maxflat filters.

7.4. SOME WELL KNOWN WAVELETS
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The next figures give a number of examples. Each figure contains a plot of ϕ and ψ: The
ϕ-function is postivive, the ψ-function oscillates. Note that wavelet functions of type (p, q)
are even functions if p and q are even, while they are odd when p and q are odd. Recall that
such a kind of symmetry was not possible for orthogonal wavelets. The functions become
increasingly smooth as p increases; the wavelets oscillate more as q increases.

Figure 7.7: CDF(2,2) wavelet
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Concerning the support of the functions ϕ, ϕ̃, ψ, and ψ̃, we refer to Theorem 6.6.2. The
MATLAB wavelet toolbox has a routine wvdtool which allows to generate figures of primal
and dual scaling functions and wavelet functions for all types of biorthogonal wavelets and
all kinds of other wavelet functions. An example of the output is given in Figure 7.9. This
example shows a general trend: the ϕ and ψ are in general smoother functions than the ϕ̃
and ψ̃. Thus the smoother filters are used as basis functions in the synthesis phase and the

7.4. SOME WELL KNOWN WAVELETS
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Figure 7.8: CDF primal ϕ and ψ functions of type (p, q), p, q = 1, 3, 5 and type (p, q), p, q =
2, 4, 6
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Figure 7.9: Biorthogonal wavelet of type (1,5)

7.4. SOME WELL KNOWN WAVELETS



7. APPROXIMATING PROPERTIES AND WAVELET DESIGN 109

less smooth ones in the analysis phase. This has some advantages in image processing.

7.5 Battle-Lemarié wavelet

We conclude with the description of the Battle-Lemarié family of wavelets. These wavelets
are based on B-splines. Let CN(R) be the space of N times continuously differentalble
functions, C0(R) = C(R), the continuous functions and C−1(R) the piecewise continuous
functions; PN [x] is the space of polynomials of degree at most N . The space

CN =
{
f : f ∈ CN−1(R), f |[k,k+1] ∈ PN [x], k ∈ Z

}

is the space of cardinal splines of order N . For example, C0 is the space of piecewise constant
functions and has for basis the indicator functions χ[k,k+1), k ∈ Z (Haar basis). Piecewise
linear splines are represented by C1. Cubic splines correspond to N = 3.

B-Spline wavelets have many advantages. The have compact support, the filter coeffi-
cients are particularly “easy” and they are as smooth as can be. The main disadvantage is
that they are not orthogonal (except for the Haar wavelets).

The most interesting basis to work with is given by B-splines. They have a compact
support and can be found by convolutions of the zero-order spline, i.e., the box function.
For example ϕ0 = χ[0,1), ϕ1 = ϕ0 ∗ ϕ0, ϕ2 = ϕ0 ∗ ϕ0 ∗ ϕ0, a cubic spline is the convolution of
4 box functions etc.

The easiest way to deal with these convolutions is to move to the Fourier domain. The
Fourier transform of ϕ0 = χ[0,1) is

Φ0(ω) =
1√
2π

1− e−iω
iω

⇒ ΦN−1(ω) = [Φ0(ω)]N =

[
1√
2π

1− e−iω
iω

]N
.

The function ϕN−1 is a piecewise polynomial of degree N − 1 and the jumps of the (N −
1)st derivative at the points k = 0, 1, . . . , n are the scaled alternating binomial coefficients
(2π)−N/2(−1)k

(
N
k

)
. This is most easily seen by the fact that a derivative in the t-domain

corresponds to a multiplication with iω in the Fourier domain. Thus for example, the Fourier
transform of the 4th derivative of ϕ3 is (2π)−2(1−e−iω)4, which means that the 3rd derivative
has jumps (2π)−2[1,−4, 6,−4, 1].

The filter corresponding to the box function has coefficients 1√
2
, 1√

2
, and transfer function

H(z) = 1√
2
(1 + z−1). Thus the transfer function of the filter corresponding to ϕN−1 is [(1 +

z−1)/
√

2]N . Thus the filter coefficients for the cubic B-spline are for example 1
4
(1, 4, 6, 4, 1).

From the obvious identity

[
1√
2π

1− e−iω
iω

]N
=

[
1 + e−iω/2

2

]N [
1√
2π

1− e−iω/2
iω/2

]N
≡ ΦN−1(ω) =

1√
2
H(ω/2)ΦN−1(ω/2)

we find by inverse Fourier transform that the dilation equation is

ϕN−1(t) = 21−N
N∑

k=0

(
N

k

)
ϕN−1(2t− k).

7.5. BATTLE-LEMARIÉ WAVELET
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The space V0 contains all smooth splines of degree N − 1 and is generated by the basis
of B-splines on unit intervals: V0 = span{ϕN−1(t − k) : k ∈ Z}. This basis is not or-
thogonal. The space V1 contains piecewise polynomials on half intervals etc. In general
Vn = span{2n/2ϕN−1(2

nt − k) : k ∈ Z}. It can be shown that these {Vn} form a MRA of
L2(R).

These basis functions are very good in approximating. For example, C(ω) has a zero of
order p = N at ω = π, and as we have seen in section 7.1, this means that the polynomials
of to degree N − 1 are all in V0, i.e., they can be represented exactly by the B-splines from
V0. Spline wavelets are very smooth.

There is a major drawback though: B-splines functions are not orthogonal. If one would
apply an orthogonalization procedure, then the orthogonal basis functions, although decaying
fast, would be supported on the whole real line.

Compactly supported spline wavelets are only possible when the orthogonality condition
is relaxed to a biorthogonality condition.

7.6 Discrete versus continuous wavelet transforms re-

visited

Historically, the continuous wavelet transform (CWT) came first and was used by physicists
as an alternative for the short time or windowed Fourier transform. The discrete wavelet
transform (DWT) is more popular for applications in numerical analysis and signal or image
processing.

Recall that the CWT of a signal f(t) is given by

Wψf = F (a, b) =
1√

2πCψ

∫

R

ψa,b(t)f(t)dt =
1√
Cψ
〈ψa,b, f〉L2(R)

where

ψa,b(t) =
√
|a|ψ (a(t− b)) and Cψ =

∫

R

|Ψ(ω)|2
|ω| dω.

The inverse transform is then given by

W−1
ψ F = f(t) =

1√
2πCψ

∫ ∫

R2

F (a, b)ψa,b(t)da db.

This requires that 0 < Cψ <∞. In other words, the admissibility condition

Cψ =

∫

R

|Ψ(ω)|2 dω|ω| <∞

should be satisfied. (Ψ(ω) is the Fourier transform of ψ(t).) This implies that we should
have Ψ(0) = 0, which means that ∫

R

ψ(t)dt = 0.

7.6. DISCRETE VERSUS CONTINUOUS WAVELET TRANSFORMS REVISITED
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So, in continuous wavelet analysis, one usually defines a wavelet to be any function whose
integral is zero and that satisfies the admissibility condition. It can be shown that if γ(t)
is a function which is k times differentiable and γ(k) ∈ L2(R), then ψ(t) = γ(k)(t) is a
wavelet according to this definition. However, with such a general definition, one does not
have a multiresolution analysis (MRA) to sustain the theory. For example, the Mexican hat
(Example 5.3.1) and the Morlet wavelet (Example 5.3.2) do not fit into a MRA. The Morlet
wavelet does only satisfy the admissibility condition approximately.

Obviously, the wavelet transform is an overcomplete representation of the signal f(t)
(we have a frame here). Indeed, instead of a one-dimensional function, one obtains a two-
dimensional representation.

The CWT is often used to characterize the (type of) singularities of the functions f(t)
[11]. It can be used for example to study fractals, self-similarity etc.

For implementation on a computer, the CWT should be discretized, but this differs
definitely from the FWT where one starts out with a discrete signal. Only if the ψ(t) of the
CWT fits into a MRA, a discretization like in the discrete case is possible, but in general,
the transform remains redundant.

7.7 Overcomplete wavelet transform

To approximate the CWT, we can compute it in a subset (grid) of the time-scale plane. In
the DWT, we have chosen to evaluate the CWT in the points

(a, b) ∈ ΓDWT = {(an, bnm) : an = 2n, bnm = 2−nm}.

Of course we could choose a more general grid Γ. The overcomplete wavelet transform
(OWT) is just the CWT but restricted to the grid Γ. Of most practical interest are of
course the cases where Γ has some “regularity”. For example the semilog regular sampling is
related to the grid ΓDWT. It is defined as Γ(∆, a0) = {am0 }×{n∆} where ∆ > 0 and a0 > 1.
That is linearly along the time axis and exponentially along the scale axis. In general such
a system will not form a basis but will be redundant. It is a frame, and thus the general
treatment should be made in the context of frames. Because the nonredundancy requirement
need not be satisfied, there is again much more freedom in designing the wavelet function to
meet whatever condition that would be demanded by the application. The reconstruction
in general frames is however not so simple as it is with a Riesz basis and the computation
is more expensive. However if the restriction of sufficiently regular grids is accepted, the
computations are not that much more expensive. The redundancy also makes the transform
much more robust against noise. The redundant discrete wavelet transform (RWT) discussed
in the next section takes the semilog regular grid Γ(1, 2), i.e., the grid an = 2n and bnm = m.
It corresponds to the DWT grid without subsampling.

7.8 Redundant discrete wavelet transform

The redundant wavelet transform is the FWT that we have described, but without the
subsampling. It is also called the stationary wavelet transform or the a trous algorithm

7.7. OVERCOMPLETE WAVELET TRANSFORM
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(Mallat). In the usual fast wavelet transform (FWT), we subsample after each filtering

Figure 7.10: The fast wavelet transform
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step: both the high pass and the low pass component. This is represented in Figure 7.10.
Only the black circles (low pass information) and the black squares (high pass information)
is kept.

In the redundant wavelet transform (RWT) however, we omit the subsampling and we
keep the black and the white circles and squares of Figure 7.11. Note that both the low pass
and the high pass transform has as many coefficients as the the part that as transformed.
To obtain results that are consistent with the results of the FWT, in the sense that the
black circles and squares in the RWT are the same as the ones obtained in the FWT, we
have to upsample the filters and use (↑ 2)h̃∗ and (↑ 2)g̃∗ in the second step, (↑ 2)(↑ 2)h̃∗ and
(↑ 2)(↑ 2)g̃∗ in the third step etc. In this way, we use filters with “holes”, whence “a trous”
algorithm. Note that the white circles and squares are not zero though, so that the RWT
and the FWT gives different results.

Since, in the RWT, we double the number of coefficients in each step, the memory
requirements and the computer time will increase: it is O(N logN) for the RWT instead of
O(N) for the FWT. On the other hand, the RWT has some advantages that are not available
for the FWT.

1. The RWT is translation invariant: the RWT of the translated signal is the translation
of the RWT. This is not true for the FWT.

2. The RWT is immediately extendable to non dyadic inputs

3. The RWT is redundant (frame) and the reconstruction is not unique. Since the num-
ber of wavelet coefficients is doubled in each step, one can compute two independent

7.8. REDUNDANT DISCRETE WAVELET TRANSFORM
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Figure 7.11: The redundant wavelet transform
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reconstructions. If the wavelet coefficients are exact, then the two reconstructions are
the same. However, if the wavelet coefficients are manipulated, then we will not have
a RWT of any signal. This may be exploited however by computing the average of
several of the possible inverse transforms and this has a smoothing effect, which may
be advantageous for noise reduction.

Finally we recall that the wavelet coefficients in the biorthogonal FWT for a function f ∈ VN
are given by (real case)

wFWT
nk =

2n/2√
2π

∫

R

f(t)ψ̃(2nt− k)dt =
〈
ψ̃nk, f

〉
L2(R)

so that we have for the RWT

wRWT
nk =

2n/2√
2π

∫

R

f(t)ψ̃(2nt− 2n−Nk)dt =
〈
ψ̃n,2n−Nk, f

〉
L2(R)

.

This can be seen as a dyadic discretisation of the biorthogonal CWT

√
CψF (a, b) =

1√
2πa

∫

R

f(t)ψ̃

(
t− b
a

)
dt =

〈
ψ̃a,b, f

〉
L2(R)

with an = 2−n and bk = 2−Nk.

7.9 Exercises

1. Compute the Fourier transform of the Haar wavelet. Show that its envelope decays
like 1/ω. This is very slow and hence the frequency localization with the Haar wavelet

7.9. EXERCISES
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is poor.

The Shannon wavelet is in a sense the dual of the Haar wavelet. Here the wavelet itself
decays like 1/t (in the time domain) and hence it has a poor localizing power for the
t-domain. How about the localization properties in the frequency domain?

2. Prove that for the Shannon wavelet and scaling function ϕ(t) + ψ(t) = 2ϕ(2t). Hint:
use the filter coefficients and the dilation equations for ϕ and ψ.

3. Prove that the Shannon wavelets are orthogonal and that they have an infinite number
of vanishing moments.

4. Give the filter coefficients (hk) for the B-splines ϕN−1?

5. By using the Figure 7.11, prove that it holds for the wavelet coefficients: wRWT
nk =

wFWT
n,2n−Nk.

6. (Coiflets) Prove that for an orthogonal wavelet with
∫
tkϕ(t)dt = 0 for k = 1, . . . , p−1

one has
vNk = (2−N/2/

4
√

2π)f(2−Nk) +O(2−N(p+1/2))

where vNk = 〈f, ϕNk〉
Hint: This is an extension of the exercise about the wavelet crime. Write vNk =
(2−N/2/

√
2π)

∫
f(2−N(t+k))ϕ(t)dt and expand f(2−N(t+k)) in Taylor series at tNk =

2−Nk and use partition of unity.

7. (Coiflets) Prove that for an orthogonal wavelet with
∫
tkψ(t)dt = 0 for k = 0, 1, . . . , p−

1 and
∫
tkϕ(t)dt = 0 for k = 1, . . . , p− 1 (Coiflets), one has, under suitable conditions

for f that ‖f − f̂N‖ = O(2−Np) where

f̂N(t) =
2−N/2

4
√

2π

∑

k

f(2−Nk)ϕNk(t).

Hint: With the previous exercise show that ‖fN − f̂N‖ = O(2−Np) where fN = Pnf =∑
k 〈f, ϕNk〉ϕNk and use Theorem 7.2.1 to get ‖f − fN‖ = O(2−pN). Combining these

gives the result.

8. Show that the RWT is indeed translation invariant, i.e., the RWT of a translated signal
is a translation of the RWT. Does it hold for the CWT?

9. Prove that
Pjf(t) =

∑

k

〈ϕ̃jk, f〉ϕjk(t).

is the projection of f ∈ L2(R) onto Vj = span{ϕjk : k ∈ Z} parallel to Ṽ ⊥
j with

Ṽj = span{ϕ̃jk : k ∈ Z}.
Hint: One has to show that L2(R) = Vj⊕Ṽ ⊥

j , i.e., Vj∩Ṽ ⊥
j = {0} and L2(R) = Vj+Ṽ

⊥
j .

7.9. EXERCISES



Chapter 8

Multidimensional wavelets

An image is a signal that is two-dimensional. The variable is not the time t but the variables
are now the x and the y direction. For a gray-scale image, the signal itself gives the value of
the “grayness” at position (x, y). One can derive a completely analoguous theory for Fourier
transform, filters, wavelet basis, etc in two variables. This leads to a theory of wavelets
in two variables which are in general not separable, i.e., ψ(x, y) can not be written as a
product ψ1(x)ψ2(y). A much easier approach is to construct tensor product wavelets which
are separable. Since this is the easiest part, we shall start with this approach.

8.1 Tensor product wavelets

A wavelet transform of a d-dimensional vector is most easily obtained by transforming the
array sequentially on its first index (for all values of its other indices), then on the second
etc. Each transformation corresponds to a multiplication with an orthogonal matrix. By
associativity of the matrix product, the result is independent of the order in which the indices
are chosen.

Let us consider a two-dimensional array (a square image say). First one can perform one
step of the 1D transform on each of the rows of the (square) image. This results in a low
resolution part L and and a high resolution part H (see Figure 8.1.A). Next, one performs
one step of the 1D transforms on the columns of this result. This gives four different squares
(Figure 8.1.B):

LL: low pass filtering for rows and columns
LH: low pass filtering for columns after high pass for rows
HL: high pass filtering for columns after low pass for rows
HH: high pass filtering for rows and columns

HH gives diagonal features of the image while HL gives horizontal features and LH gives
vertical features.

Thus, if f is the (square) matrix containing the pixels of the image, and if K̃ = [H̃ G̃]

115
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Figure 8.1: Separable 2D wavelet transform
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is the matrix associated with a single step of the 1D wavelet transform, then

f1 =
LL LH

HL HH
= [K̃∗]f [K̃∗]t.

There are two possibilities to proceed:

1. the rectangular transform: further decomposition is performed on everything but the
HH part. (Figure 8.2.A)

2. the square transform: further decomposition is performed on the LL part only. (Fig-
ure 8.2.B)

Figure 8.2: Different subdivisions of square

A B

The rectangular transform corresponds to taking a 1-dimensional wavelet transform in x
and y independently. Thus with a matrix K̃1 of smaller size, but of the same form as K̃, we
get for the second step

f2 =

[
K̃∗

1 0
0 I

]
f1

[
K̃∗

1 0
0 I

]t

8.1. TENSOR PRODUCT WAVELETS
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and similarly for all the next steps. Thus if W is the matrix for the complete wavelet
transform of a column, then the rectangular transform for the image f is WfWt.

The rectangular division corresponds to setting

Wn = span{ψnk(x)ψnl(y) : k, l ∈ Z},

while
Vn = span{ϕnk(x)ϕnl(y), ϕnk(x)ψnl(y), ψnk(x)ϕnl(y) : k, l ∈ Z}.

Setting by definition
(h⊗ g)(x, y) = h(x)g(y),

this gives rise to a wavelet expansion of the form

f(x, y) =
∑

m,l

∑

n,k

qm,n,k,l(ψml ⊗ ψnk)(x, y).

Note that the terms in this expansion give a different resolution in x- and y-direction: For
the term with ψml ⊗ ψnk, we get in the x-direction the scaling 2−m while in the y-direction
the scaling is 2−n.

In the square transform we get regions like in Figure 8.2 B or 8.1.C. At each stage, only
the LL quarter is further subdivided. The second step can not be described by row and
column operations on the image f 1. We have to take out the LL part f 1

LL explicitly and
we subdivide only this part by an operation of the form [K̃∗

1][f
1
LL][K̃∗

1]
t etc. This case gives

subspaces Vn in the MRA which are now spanned by

Vn = span{ϕnk(x)ϕnl(y) : k, l ∈ Z} (LL squares)

but the Wn are spanned by mixtures of basis functions which are now easy to describe:

Wn = span{ϕnk(x)ψn,l(y), ψnk(x)ϕnl(y), ψnk(x)ψnl(y) : k, l ∈ Z}.

The first set is for the HL quarters, the second set for the LH quarters and the last one for
the HH quarters.

Note that there is now only one scaling 2−n for both x- and y-direction.
It is the latter approach we shall follow below. We now have

Vn+1 = V
(x)
n+1 ⊗ V

(y)
n+1

= (V (x)
n ⊕W (x)

n )⊗ (V (y)
n ⊕W (y)

n )

= (V (x)
n ⊗ V (y)

n )⊕ (V (x)
n ⊗W (y)

n )⊕ (W (x)
n ⊗ V (y)

n )⊕ (W (x)
n ⊗W (y)

n )

The projectors are

Pnf =
∑

k,l

vnklϕnk(x)ϕnl(y)

and
Qnf =

∑

k,l

[w
(x)
nklψnk(x)ϕnl(y) + w

(y)
nklϕnk(x)ψnl(y) + w

(xy)
nkl ψnk(x)ψnl(y)].

8.1. TENSOR PRODUCT WAVELETS
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The coefficients are now arranged in matrices (vn = (vnkl)k,l etc.) and they are found by the
recursions

vn−1 = H̃∗vn[H̃
∗]t (LL part)

w
(x)
n−1 = H̃∗vn[G̃

∗]t (LH part)

w
(y)
n−1 = G̃∗vn[H̃

∗]t (HL part)

w
(xy)
n−1 = G̃∗vn[G̃

∗]t (HH part).

Note that each of these matrices is half the number of rows and half the number of columns
of vn: each contains one fourth of the information.

As for the 1-dimensional case, the vn−1 matrices give the coarser information, while at
each level, there are three w-matrices that give the small scale information. For example, a
high value in w

(y)
n−1 indicates horizontal edges, a high value of w

(x)
n−1 indicates vertical edges,

and large w
(xy)
n−1 indicates corners and diagonals.

The reconstruction algorithm uses

vn+1 = HvnH
t + Gw(x)

n Ht + Hw(y)
n Gt + Gw(xy)

n Gt.

Example 8.1.1. In Figure 8.3, we show an image of a house and below it, one can see the
square and the rectangular transform respectively1. Only two steps of the transform are
done. Observe the horizontal, vertical and diagonal features that can be seen in the different
parts. We have used the most simple wavelet: the Haar wavelet. 3

Example 8.1.2. To better illustrate the vertical, diagonal and horizontal aspects of the
components, we have transformed the image in Figure 8.4 for 3 levels, using a Coiflet with
2 vanishing moments. 3

8.2 Nonseparable wavelets

We shall not work out all the details, but only introduce the main ideas.
A 2D filter is still described by a convolution: Let H be a filter with impulse response

h = (hk1,k2), k1, k2 ∈ Z, then g = Hf = h ∗ f which is defined by

gn1,n2
= (Hf)n1,n2

=
∑

k1

∑

k2

hk1,k2fn1−k1,n2−k2

In the z-domain, this becomes a multiplication:

G(z) = H(z)F (z) =

(
∑

k1,k2

hk1,k2z
−k1
1 z−k22

)(
∑

k1,k2

fk1,k2z
−k1
1 z−k22

)
.

1To be precise, we have plotted in the smallest upper left corner the coefficients of ϕnl(x)ϕnk(y), but for
the other blocks we have plotted the negative of the image for better visibility. The coefficients in those blocks
are small and since 0 corresponds to black and 255 corresponds to white, plotting the original transform
gives (at the resolution of the printer) almost uniformly black blocks.

8.2. NONSEPARABLE WAVELETS
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Figure 8.3: Image and its wavelet transform

8.2. NONSEPARABLE WAVELETS
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Figure 8.4: Image and its wavelet transform
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In 2D the subsampling will be described by a 2 × 2 matrix M. In the separable case it
is diagonal, in general it is not. For example, if M = 2I2, then

(↓M)y(n1, n2) = y(Mn) = y(2n1, 2n2)

thus, we have an ordinary downsampling (↓ 2) in each direction. We keep only 1 sample out
of 4, thus we need 4 sublattices to cover the whole original lattice. Note that detM = 4.

For a quincunx filter bank, the subsampling matrix is

Mq =

[
1 1
−1 1

]
.

The subsampling operation keeps the samples for which n1 + n2 is even.

(↓Mq)y(n1, n2) = y(Mqn) = y(n2 + n1, n2 − n1)

This sampling scheme keeps 1 out of 2 samples, so that we need 2 sublattices. Note that
here 2 = detMq.

For the separable wavelets, one needs 4 channels in the filter bank (as we saw in the
previous section), For the quincunx example, one needs only 2 channels. The modulation
matrix for the filter bank is thus of the form

M(z1, z2) =

[
H(z1, z2) H(−z1,−z2)
G(z1, z2) G(−z1,−z2)

]

where H and G represend the low-pass and the band-pass filters involved. Like in the 1D
case, the simplest solution is given by a paraunitary solution i.e., by choosing MM∗ = 2I,
so that G(z1, z2) = an odd 2D delay of H(−z−1

1 ,−z−1
2 ).

8.2. NONSEPARABLE WAVELETS
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Figure 8.5: Sampling lattices for M and Mq

As for the multiresolution analysis, we can say the following. Recall the definitionH(ω) =∑
k hke

−ikω from the 1D MRA which represented a low-pass filter with an impulse response
given by h = (hk) with hk = 1√

2
ck. The dilation equation was

ϕ(t) =
√

2
∑

k

hkϕ(2t− k) =
√

2 〈h∗,Φ0(2t)〉`2(Z) , h∗ = (h̄−k), Φ0(t) = (ϕ0k(t)).

This is generalized to

ϕ(t) =
√
M
∑

k

hkϕ(Mt− k) =
√
M 〈h∗,Φ0(Mt)〉`2(Z2) ,

k = (k1, k2), t = (t1, t2), M = detM, h∗ = (h̄−k) ∈ `2(Z2), Φ0(t) = (ϕ0k(t)) ∈ `2(Z2)
and ϕ0,k(t) = ϕ(t− k). Note that M preserves the double integral if we change variables
s = Mt− k

M

∫ ∫
ϕ(Mt− k)dt1dt2 =

∫ ∫
ϕ(s)ds1ds2.

In general there are M − 1 wavelet functions, defined by the equation

ψ(m)(t) =
√
M
∑

k

g
(m)
k
ϕ(Mt− k) =

√
M
〈
g(m)
∗ ,Φ0(Mt)

〉
`2(Z2)

, m = 1, . . . ,M − 1

where g
(m)
∗ = (ḡ

(m)
−k

), Φ0 as above.

V0 = span{ϕ0k(t) = ϕ(t− k) : k ∈ Z
2}

while the orthogonal complement is given by

W0 = span{ψ(m)
0k (t) = ψ(m)(t− k) : m = 1, . . . ,M − 1;k ∈ Z

2}.

Taking all the dilates and translates of the wavelets

ψ
(m)
nk (t) = Mn/2ψ(m)(Mnt− k),

we obtain an orthonormal basis for the whole space L2(R2).

8.3 Examples of 2D CWT wavelets

Some of the wavelet functions used in CWT are easily generalized to the 2D case.

8.3. EXAMPLES OF 2D CWT WAVELETS
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8.3.1 The 2D Mexican hat

The 2D Mexican hat function is defined as

ψ(t) = (‖t‖2 − 2) exp

(
−1

2
‖t‖2

)
.

This is an obvious generalization of the 1D case. It is real and rotation invariant. It is in
fact obtained by rotating the 1D function around the vertical-axis.

There does exist an anisoropic version when t is replaced by At where A = diag(ε−1/2, 1)
with ε > 1.

8.3.2 The 2D Morlet wavelet

The definition is

ψ(t) = exp(ikT t) exp

(
−1

2
‖At‖2

)
.

The vector k is the wave vector and the diagonal A matrix is the anisotropy matrix. It
plays the same role as explained above for the Mexican hat function. Like in the 1D case, it
does not satisfy the admissibility condition exactly, but the error is negligible for ‖k‖ > 5.6.
The modulus is a Gaussian, while the phase is constant along directions orthogonal to k. It
smooths in all directions, but detects sharp transitions in directions perpendicular to k.

8.3. EXAMPLES OF 2D CWT WAVELETS



Chapter 9

Subdivision, second generation
wavelets and the lifting scheme

Although the lifting scheme, which is an efficient computational scheme to compute wavelet
transforms can be derived directly from the polyphase matrix, it can be applied in much
more general situations than the classical wavelet filter banks. Therefore, we introduce it
via an alternative approach to wavelets (subdivision schemes) which will give a framework
in which it is easier to consider more generale situations. These more general wavelets are
often referred to as second generation wavelets. This approach to the lifting scheme has the
advantage that it places this computational scheme in the context where it was discovered.
For simplicity we work with real data and real filters.

The contents of this chapter is extensively described in the papers [23] and [8].
Instead of starting with the most general subdivision schemes, we give first the example

of the Haar wavelet transform and illustrate how the lifting scheme operates in this simple
case.

9.1 In place Haar transform

We consider the unnormalized scaling functions ϕnk(t) = 2nϕ(2nt− k) with ϕ(t) = χ[0,1)(t)
the box function and the wavelets ψnk(t) = ψ(2nt − k) with ψ(t) = ϕ(2t) − ϕ(2t − 1).
So the filter coefficients are (h0, h1) = (1/2, 1/2) and (g0, g1) = (1,−1). Thus the moving
average and moving difference filters give the following computation of scaling and wavelet
coefficients in the FWT

vnk =
vn+1,2k+1 + vn+1,2k

2
and wnk = vn+1,2k+1 − vn+1,2k.

Although the vnk and wnk take the same amount of memory to store, we cannot write vnk
and wnk immediately in the place of vn+1,k because one needs the vn+1,2k+1 and vn+1,2k until
both vnk and wnk are computed. However, we can rearrange the computations as follows.
First compute wnk = vn+1,2k+1 − vn+1,2k, then it is easily seen that vnk = vn+1,2k + wnk/2.
Thus, once wnk has been computed, we do not need to keep vn+1,2k+1 and we can replace it

123
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with wnk. After vnk has been computed, it can be stored in the place of vn+1,2k. Thus, we
do not really need the index n and we can simply write

v2k+1 ← v2k+1 − v2k and v2k ← v2k + v2k+1/2.

The inverse transform is

v2k ← v2k − v2k+1/2 and v2k+1 ← v2k+1 + v2k.

Note that this is just a matter of changing signs.
This in-place Haar transform is a very simple case of a lifting scheme. Such a scheme

consists of essentially three steps

1. Splitting: The data are split into two sets say O and E (in this case the even and the
odd samples).

2. Dual lifting = Prediction: The data from set O are predicted (by some operator – i.e.
filter – P) from the data in the other set and only the difference, i.e., the prediction
error is kept: O ← P(E) − O. In our example the odd samples are predicted by
the even samples by the trivial operator which predicts v2k+1 by v2k. The difference
v2k+1 − v2k is stored, instead of the odd samples. The odd samples can always be
recovered from this prediction error and the prediction from the even samples.

3. Primal lifting = Updating: Now the set E is updated (using some operator – i.e. filter
– U) by the (new) set O: E ← E +U(O). In our example, this is v2k ← v2k + v2k+1/2,
thus the operator U takes half of the odd samples.

Figure 9.1: Lifting scheme

split P U

−

+
dual

lifting
primal
lifting

predict update

merge

−

+

U P

synthesis

Notes:

1. The splitting is sometimes called the lazy wavelet. The splitting into even and odd
samples as we have proposed is the most logical one. Since we use the set E to predict
the set O, and because we assume there is a high correlation between neighbouring
samples, the even-odd splitting is the obvious one to choose.

9.1. IN PLACE HAAR TRANSFORM



9. SUBDIVISION AND LIFTING 125

2. What we described above is just one dual-primal pair of lifting steps. In practice, there
may be several such pairs before a new splitting is done.

3. The prediction error, i.e., the set O, keeps the detail information and so the set O is
like the high pass part. The other set E gives the low pass part.

4. The updating in the primal lifting step is the one that really matters. If the set E
is some low resolution approximation of the original signal, then we would expect
that the average remains the same in the original signal and in the low resolution
approximation. In general one may impose more conditions on the moments. Since E
contains half as many samples as the original signal, we expect in the example of the
Haar transform that ∑

k

vn+1,k = 2
∑

k

vn,2k.

Since 2
∑

k vn,2k = 2
∑

k vn+1,2k + (
∑

k vn+1,2k+1 −
∑

k vn+1,2k), this is precisely what is
obtained.

5. There is no problem to invert the lifting scheme: just reverse the order of the lifting
steps and replace a plus by a minus and conversely. The splitting operation is undone
by a merging operation.

6. Suppose the filters P and U are replaced by approximations {P} and {U}, for example
because the calculations are done in integer arithmetic, and the approximation is caused
by rounding (a nonlinear filter!). The previous inversion operation is still valid. On
condition that the rounding is performed consistently, then perfect inversion, i.e. PR,
remains possible.

7. This scheme is equivalent with a filter bank that realizes a wavelet transform. If we
feed the system with the scaling coefficients at level n + 1, namely vn+1,k, then the
output after the lifting steps, just before the next splitting, are the wavelet coefficients
wnk (in the top channel) and the scaling coefficients vnk (in the bottom channel).

After having illustrated the idea of lifting with this very simple example of the Haar wavelet,
we will give a more systematic way of obtaining predictions for the set O from the set E
and for designing updating operations. These predictions are based on subdivision schemes
which are introduced in the next sections. There are two possibilities: the interpolating
subdivision scheme and the averaging subdivision scheme.

To see the relation with the previous wavelet analysis, we give some general considerations
first. Recall the cascade algorithm of Section 5.6.4. If we do the synthesis in the previous
lifting scheme, starting at level 0 and performing an infinite number of reconstruction steps
(so that in theory we know the signal at infinite precision), then, if we start with v0k = δk
and w0k = 0, it is clear that, just like in the cascade algorithm, the resulting signal by this
reconstruction will be the scaling function ϕ(t) (if the algorithm converges). More generally,
starting with vnl = δk−l and wnl = 0, then the resulting signal will be ϕnk(t). Note that in
principle the samples need not be taken in equidistant points (but for simplicity we almost
always assume that the sampling points at level n are tnk = 2−nk). Assume that we start with

9.1. IN PLACE HAAR TRANSFORM
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v0k = δk and w0k = 0 and that after one step of reconstruction, we get coefficients v1k = ck,
then starting at level 1 with the data ck results in the same ϕ(t) as the one obtained by
the original data v0k = δk and w0k = 0 at level 0. This means that we have the relation
ϕ(t) =

∑
k ckϕ1k(t), thus for a set of dyadic points tnk = 2−nk, this is ϕ(t) =

∑
k ckϕ(2t−k),

so that one step of the synthesis scheme gives the coefficients of the dilation equation.

9.2 Interpolating subdivision

The following subdivision interpolation scheme is due to Deslauriers and Dubuc. Suppose
we know a continuous signal y(t), t ∈ R by its samples at integer points t0k = k, k ∈ Z:
y(t0k) = y0k, k ∈ Z. We can try to find values in between these points by interpolation. For
example, defining the finer mesh t1,2k = t0k and t0,2k+1 = (t0,k + t0,k+1)/2, we compute the
values y0,2k+1 in the latter points by linear interpolation;

y1,2k = y0,k and y1,2k+1 =
1

2
(y0,k + y0,k+1), k ∈ Z.

This procedure can be repeated over and over to define

yn+1,2k = yn,k and yn+1,2k+1 =
1

2
(yn,k + yn,k+1), k ∈ Z.

So we get a representation at different resolution levels. As n→∞, we obtain a continuous
piecewise linear function which connects the originally given points by straight lines. See
Figure 9.2.

Figure 9.2: Interpolating subdivision
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Of course, this is but the simplest possible case of an interpolation scheme. More gen-
erally, we take polynomials of a higher degree to interpolate. For example of odd degree
N ′ = N − 1 with N = 2D. This N is called the order of the subdivision interpolation
scheme. To define the value of y at a midpoint, we take D values to the left and D values to
the right, and find the interpolating polynomial of degree N ′ which interpolates these points
and evaluate it at the midpoint. Thus at level n, we define polynomials pk of degree N − 1
such that

pk(tn,k+i) = yn,k+i, i = −(D − 1), . . . , (D − 1), D

and define the value at level n+ 1 by

yn+1,2k = pk(tn+1,2k) = pk(tn,k) = yn,k, k ∈ Z

while
yn+1,2k+1 = pk(tn+1,2k+1), k ∈ Z.

Of course, if there are only a finite number of data, we can not take symmetric points near
the boundary. One can then take 2D points which are “as symmetric as possible”. For
simplicity we shall initially assume that we have infinitely many points, so that there are no
boundary effects.

If we start this interpolating subdivision scheme with the impuse δ (i.e. y0,0 = 1 and
y0,k = 0 for all k 6= 0), then this scheme will give a continuous function, which we shall call
the scaling function of the process. For the linear interpolating subdivision scheme, this is a
hat function. The following properties are easily verified.

Theorem 9.2.1. If ϕ(t) is a scaling function of an interpolation scheme with polynomials
of degree N ′ = N − 1 = 2D − 1, then

1. It has compact support (it is zero outside [−N ′, N ′]) and it is symmetric around t = 0.

2. It satisfies ϕ(k) = δk, k ∈ Z

3. ϕ and its integer translates reproduce all polynomials of degree < N :
∑

k k
pϕ(t− k) =

tp, 0 ≤ p < N , t ∈ R.

4. ϕ ∈ Cα(R) with α = α(N) nondecreasing with N

5. ϕ satisfies a refinement equation: there are hk such that ϕ(t) =
∑N

j=−N hjϕ(2t− j).

Proof. The points (1)–(3) follow immediately by construction. For (4) we refer to [23].
Point (5) is seen as follows. When starting from level 0 with the delta function, then at
level 1 this will generate values in the points t1,j, j = −N, . . . , N . Call these values hj. It is
obvious that the result after infinitely many refinement steps starting from level 0 with the
delta function or starting from level 1 with the coefficients hj will be the same. This implies
the dilation equation. Note that h2j = δ0,j , so that in particular h−N = hN = 0.

Example 9.2.1. For linear interpolation the coefficients are given by (h−1, h0, h1) = (1/2, 1, 1/2).
The scaling function is the hat function connecting (−1, 0), (0,1) and (1,0). 3

9.2. INTERPOLATING SUBDIVISION



9. SUBDIVISION AND LIFTING 128

Define the scaled translates ϕn,k(t) = ϕ(2nt − k). Note that ϕn,k(t) is obtained by starting
the subdivision scheme at level n with the data δi−k, i ∈ Z.

Corollary 9.2.2. The functions ϕn,k(t) for a subdivision scheme with filter coefficients (hj)
satisfy ϕn,k =

∑
j hj−2kϕn+1,j.

Proof. This follows from the refinement equation, setting t← 2nt− k and j ← j − 2k.

If we define Vn = span{ϕn,k : k ∈ Z}, n = 0, 1, . . ., then obviously V0 ⊂ V1 ⊂ V2 ⊂ · · ·.
If f ∈ Vn, then it can be written as f =

∑
k vnkϕnk. Thus f is the result of a subdivision

scheme starting at level n with the data vn,k. Since f ∈ Vn ⊂ Vn+1, it can also be written as
f =

∑
i vn+1,iϕn+1,i. We have

Theorem 9.2.3. If the subdivision scheme has coefficients (hj), and if

f =
∑

k

vn,kϕn,k =
∑

i

vn+1,iϕn+1,i

then vn+1,i =
∑

k hi−2kvn,k.

Proof. This follows from the refinement equation and Corollary 9.2.2.

In Figure 9.3 we have shown the scaling functions for interpolating subdivision for degree
N ′ = 1, 3, 5. The relevant filter coefficients are indicated by circles.

Figure 9.3: Interpolating subdivision scaling functions
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9.3 Averaging subdivision

The following subdivision scheme is introduced by Donoho. Consider as before the points
tnk = k/2n for k ∈ Z which correspond to the subdivision at resolution level n. For ease of
notation, we define the averaging operator

Ink{f} =

∫ tn,k+1

tnk
w(t)f(t)dt

∫ tn,k+1

tnk
w(t)dt

.

For simplicity of notation, we shall assume most of the time that w ≡ 1. Suppose we are
given the averages of a function over intervals I0k = [k, k+ 1]. Thus with t0k = k, k ∈ Z, we
know v0k = I0k{f}. With these data we can represent the function at this resolution level as
a piecewise constant function taking the value v0k in the interval I0k. To compute averages on
the finer mesh t1,k, we can define a polynomial of degree 2 which satisfies I0,k+i{p} = v0,k+i,
i = −1, 0, 1, at level 0 and then define v1,2k = I1,k{p} and v1,2k+1 = I1,k+1{p}. Thus the
middle interval of level n is split in half and each half gets a new average constant function
value (see Figure 9.4). This process is continued so that at level n, one computes a polynomial
of degree 2 such that In,k+i{p} = vn,k+i, i = −1, 0, 1, and then define vn+1,2k = In+1,k{p}
and vn+1,2k+1 = In+1,k+1{p}. It is clear that if the original function was quadratic, then this
scheme will regenerate the original function.

In general, one takes a polynomial of degree N −1 with N = 2D+1 odd and starts from
the averages over N intervals at level n to compute the average over the middle intervals at
level n + 1. Thus in general, given {vn,k−D, . . . , vn,k+D}, one constructs a polynomial p of
degree N − 1 satisfying

In,k+l{p} = vn,k+l, −D ≤ l ≤ D

and computes the averages for the two central intervals at the finer level n+ 1 as

vn+1,2k = In+1,2k{p} and vn+1,2k+1 = In+1,2k+1{p}.

See Figure 9.4.
Again, as in the previous section, we can start with the averages given by the impulse

δ and apply the previous averaging subdivision scheme and the result is called the scaling
function of this scheme. It has the following properties

Theorem 9.3.1. If ϕ(t) is a scaling function of an averaging scheme with polynomials of
degree N ′ = N − 1 = 2D, then

1. It has compact support (it is zero outside [−N ′, N ]) and it is symmetric around t = 1/2.

2. It satisfies I0k{ϕ} = δk, k ∈ Z

3. ϕ and its integer translates reproduce all polynomials of degree < N . For example, if
w ≡ 1 then

1
p+1

∑
k[(k + 1)p+1 − kp+1]ϕ(t− k) = tp, 0 ≤ p < N , t ∈ R.

4. ϕ ∈ Cα(R) with α = α(N) nondecreasing with N

9.3. AVERAGING SUBDIVISION
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Figure 9.4: Averaging subdivision
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5. ϕ satisfies a refinement equation: there are hk such that ϕ(t) =
∑N

j=−N+1 hjϕ(2t− j).

Proof. The proof is like in the case of interpolating subdivision. For example in (3), we have

for w = 1 that I0k{p} =
∫ k+1

k
f(t)dt for any polynomial f of degree p. For f(t) = tp, we get

the data v0k = 1
k+1

[(k+1)p+1−kp+1]. Thus starting at level 0 with the data
∑

k v0kδ(t−k), the
subdivision scheme will end up with

∑
k v0kϕ(t−k). And since every step of the subdivision

reproduces polynomials of degree p, this has got to be tp itself. The proof of (5) is along the
same lines.

The construction also implies that h0 = h1 and h2j = −h2j+1 for j 6= 0. If we define as before
ϕnk(t) = ϕ(2nt − k), then we can prove as in the previous section that f =

∑
k vn,kϕn,k =∑

j vn+1,jϕn+1,j implies vn+1,j =
∑

k hj−2kvn,k.
Also here some precautions should be taken near the boundary when only a finite number

of data are available.
In Figure 9.5 we have shown the scaling functions for averaging subdivision for degree

N ′ = 2, 4, 6. The relevant filter coefficients are indicated by circles.

9.4 Second generation wavelets

Second generation wavelets refer to situations which are generalizations of the classical case.
For example, in the classical case the MRA is for the whole real line. If however there is a
finite number of data, then the functions are defined in a finite interval. An image contains

9.4. SECOND GENERATION WAVELETS
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Figure 9.5: Averaging subdivision scaling functions
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only a finite number of pixels. At the boundary, where one can run out of data, one can
use several strategies, like symmetric or asymmetric or cyclic extension of the data or more
drastically: zero padding (extend it with zeros). It would be more natural if there were
special basis functions near the boundary (like for spline functions for example) such that
all basis functions are only defined in the interval. This still needs some adaptations near
the boundary, but they can be obtained by the same principle in these subdivision schemes
as we have seen above.

Also irregularly spaced data form a problem in classical analysis. For the subdivision
schemes, there is again no problem to generalize the idea.

For the orthogonality, one can make use of a weighted inner product, like 〈f, g〉 =∫ 1

0
f(t)g(t)w(t)dt in L2([0, 1], w) where w is some positive weight function. Also this can

be dealt with, without causing real difficulties by the subdivision schemes.
As an example, we shall treat in the next sections the MRA of real functions on the

interval [0, 1] which are square integrable with respect to a weighted inner product as the
one above.

9.5 Multiresolution

We assume now that we work with a limited number of data and we shall consider the real
functions in L2 = L2([0, 1], w). Since the functions are real, we have 〈f, g〉 = 〈g, f〉 =∫ 1

0
w(t)f(t)g(t)dt. The coarsest level is n = 0 and we will consider levels of inreasing

9.5. MULTIRESOLUTION
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resolution n = 1, 2, . . .. The subdivision points at level n are denoted as tn,k and these
could be irregularly spaced. In the interpolating subdivision scheme, these points are num-
bered k = 0, 1, . . . , kn = 2n, while for the averaging subdivision scheme they are numbered
k = 0, 1, . . . , kn = 2n − 1.

A MRA for L2 can then be defined as the set of nested spaces

Vn = span{ϕnk : k = 0, 1, . . . , kn}, n = 0, 1, . . .

where ϕ is the (primal) scaling function of the subdivision scheme and ϕnk(t) = ϕ(2nt− k).
Clearly V0 ⊂ V1 ⊂ · · · and

⋃
n>0 Vn is dense in L2.

Let Pn denote the orthogonal projection operator onto Vn. If the basis functions {ϕnk}kn

k=0

are orthogonal, then of course Pnf =
∑

k 〈ϕnk, f〉ϕnk, but we shall immediately work with
a biorthogonal basis of scaling functions ϕ̃nk(t) = ϕ̃(2nt− k) with ϕ̃ some dual biorthogonal
scaling function. So we assume the biorthogonality condition 〈ϕnk, ϕ̃nk′〉 = δk−k′ and the

normalizing condition
∫ 1

0
ϕ̃nk(t)w(t)dt = 1. Note that this does not define the ϕ̃ uniquely.

There are more solutions possible. In any case, for a given biorthogonal basis, we obtain the
the oblique projection on Vn by

Pnf =
∑

k

〈ϕ̃nk, f〉ϕn,k.

Example 9.5.1. In the subdivision schemes Pnf(t) =
∑

k vnkϕnk(t).
In the interpolatory subdivision, let us take the biorthogonal basis such that Pnf(t) is the

function in Vn, (thus the linear combination of the ϕnk) that takes the values f(tnk) in the
points tnk. We also know that in this scheme the ϕnk are functions satisfying ϕnk(tnl) = δk−l,
and so Pnf(tnk) = f(tnk) =

∑
i vniδk−i = vnk. Thus vnk = f(tnk). On the other hand

vnk = 〈ϕ̃nk, f〉. Hence, because this is true for all f , the dual functions ϕ̃nk are delta
functions: ϕ̃nk(t) = δ(t− tnk), so that vnk = 〈ϕ̃nk, f〉 = f(tnk).

In the averaging subdivision scheme, a similar derivation can be made. We assume that
vnk = 〈ϕ̃nk, f〉 should be an average over the interval Ink = [tnk, tn,k+1], and so, ϕ̃nk =
χnk/|Ink| with χnk the indicator function of interval Ink and |I| =

∫
I
w(t)dt. Indeed, we then

have

vnk = 〈ϕ̃nk, f〉 =

∫ 1

0

f(t)ϕ̃nk(t)w(t)dt = Ink{f}.
3

We shall say that the MRA has order N if the order of the subdivision scheme is N , thus
this means that if the data vnk at level n correspond to a polynomial of degree < N , then
the subdivision scheme shall synthesize this polynomial exactly. In other words Pnt

p = tp

for 0 ≤ p < N .
Defining Ṽn = span{ϕ̃nk : k = 0, . . . , kn} and P̃n =

∑
k 〈ϕnk, ·〉 ϕ̃nk, it should be clear

that the dual scaling function ϕ̃ defines (at least formally) a dual MRA of L2. However, the
order Ñ of the dual MRA can be different from the order N of the primal MRA.

Example 9.5.2. In the linear interpolating subdivision scheme, the primal functions are
hat functions and the dual functions are Dirac impulses. Therefore Ñ = 0, while for the
primal MRA, we had N = 2. 3
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Generalizing the filter relations we derived before, we could say that if ϕ̃n,k =
∑

j h̃n,k,jϕ̃n+1,j ,
then because vnk = 〈ϕ̃nk, f〉 and vn+1,k = 〈ϕ̃n+1,k, f〉,

vn,k =
∑

j

h̃n,k,jvn+1,j .

On the other hand if f ∈ Vn for all n ≥ n0, then f =
∑

k vnkϕnk =
∑

j vn+1,jϕn+1,j , n ≥ n0,
so that using ϕnk =

∑
j hn,k,jϕn+1,j , we get that the coefficients at successive levels are

related by filtering relations

vn+1,k =
∑

j

hn,j,kvn,j.

Note also that limn→∞ vn,k2n−n0 = f(k2−n0) for sufficiently smooth functions, since the aver-
age over an interval converges to the function value.

Example 9.5.3. In the interpolating subdivision scheme we had vnk = vn+1,2k. Thus h̃n,k,j =
δj−2k. Moving to a coarser level (analysis) is obtained by subsampling the even samples.

In the averaging subdivision scheme, the dual scaling functions are normalized box func-
tions. Thus

ϕ̃nk =
1

|Ink|
[|In+1,2k|ϕ̃n+1,2k + |In+1,2k+1|ϕ̃n+1,2k+1]

so that in this case vnk = hn,k,2kvn+1,2k + hn,k,2k+1vn+1,2k+1 with

hn,k,2k =
|In+1,2k|
|Ink|

, and hn,k,2k+1 =
|In+1,2k+1|
|Ink|

.

3

9.6 The (pre-)wavelets

When a function is represented at different levels n and n+1, then the coarser representation
Pnf will loose some fine detail which was present in the finer representation Pn+1f . Assume
we capture this fine detail as (Pn+1 − Pn)f which is in Vn+1 but not in Vn. It is in a
complementary space Wn which is such that we have the direct sum relation Vn+1 = Vn⊕Wn,
but these spaces need not be orthogonal.

Since dimVn = 2n (averaging subdivision) or 2n+1 (interpolating subdivision), it is clear
that dimWn = 2n. Thus there should be a set of wavelet functions ψnk such that they form
a basis for Wn:

Wn = span{ψnk : k = 0, . . . , 2n − 1}.
Of course, since Wn ⊂ Vn+1, there must exist coefficients gn,k,j such that

ψnk(t) =
∑

j

gn,k,jϕn+1,j(t).

This Wn is however not completely arbitrary. Indeed, since PnVn+1 = Vn, it follows that
PnWn = {0}, and thus it should hold that 〈ψnk, ϕ̃nl〉 = 0 for all relevant k and l. Thus
Wn ⊥ Ṽn.
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By duality we also have a space

W̃n = span{ψ̃nk : k = 0, . . . , 2n − 1}

with
〈
ψ̃nk, ϕnl

〉
= 0, i.e., W̃n ⊥ Vn. Moreover, we assume that the primal and dual wavelet

basis is biorthogonal:
〈
ψnk, ψ̃nl

〉
= δk−l. Let

ψ̃nk(t) =
∑

j

g̃n,k,jϕ̃n+1,j(t)

and assume that (Pn+1 − Pn)f =
∑

k wnkψnk, then the wavelet coefficients are given by

wnk =
〈
f, ψ̃nk

〉
and they satisfy

wnk =
∑

j

g̃n,k,jvn+1,j .

The wavelet transform of f ∈ Vn corresponds to the representation

f(t) = P0f(t) +
n−1∑

m=0

2m−1∑

k=0

wmkψmk(t),

which is based on Vn = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wn−1.

Example 9.6.1. Consider again the interpolating subdivision scheme. Since

δk−i = ϕnk(tn,i) =
∑

j

hn,k,jϕn+1,j(tn+1,2i) = hn,k,2i,

the refinement equation becomes

ϕnk =
∑

j

hn,k,jϕn+1,j = ϕn+1,2k +
∑

j

hn,k,2j+1ϕn+1,2j+1.

Thus after subsampling, i.e., setting vnk = vn+1,2k, we get

Pnf =
∑

k

vnkϕnk =
∑

k

vn+1,2kϕn+1,2k +
∑

k

∑

j

vnkhn,k,2j+1ϕn+1,2j+1.

Thus the difference Pn+1f − Pnf depends only on the odd ϕn+1,2k+1. Thus we may use
ψnk = ϕn+1,2k+1. Identification of coefficients gives

wnk = vn+1,2k+1 −
∑

j

hn,j,2k+1vnj.

Take for example the linear interpolating subdivision scheme (i.e., N = 2),

Pnf(t) =
∑

k

vnkϕnk(t), vnk = f(k2−n) = f(tnk).
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Figure 9.6: Linear interpolation

subsampling

linear interpolation

level n
level n + 1

difference

vn,k vn+1,k

wn,k

Moving to a coarser level is obtained by subsampling, i.e., by keeping only the even samples:
vn,k = vn+1,2k. The difference at the odd points is

wnk = (Pn+1 − Pn)f(tn+1,2k+1) = vn+1,2k+1 −
1

2
(vnk + vn,k+1). (9.1)

Note ψnk(t) = ψ(2nt− k) with ψ(t) = ϕ(2t− 1). See Figure 9.6. 3

Computing values at the intermediate points vn+1,2k+1 by interpolation or averaging using
the data Pnf can be seen as a prediction and Qnf = (Pn+1−Pn)f then gives the prediction
error.

Theorem 9.6.1. If the orders of the primal and dual MRA are given by N and Ñ respec-
tively, then the primal and dual wavelet functions will have Ñ and N vanishing moments
respectively:

〈
tp, ψ̃nk

〉
= 0, 0 ≤ p < N and 〈tp, ψnk〉 = 0, 0 ≤ p < Ñ.

Proof. By definition Pnt
p = tp for 0 ≤ p < N and thus

∑
k 〈ϕ̃nk, tp〉ϕnk = tp. Because〈

ϕnk, ψ̃nl

〉
= 0, we get after taking the inner product with ψ̃nl that

〈
tp, ψ̃nk

〉
= 0 for

0 ≤ p < N . The other statement is by duality.

9.7 The lifting scheme

The subdivision schemes and the corresponding “wavelets” do not really give what you would
expect from a wavelet analysis.

Example 9.7.1. For example, take the interpolating subdivision scheme and assume that
we have at level n + 1 the data 1, 0, 1, 0, 1, 0, . . .. Taking the even samples to move to the
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coarser level n, would result in the constant data 1, 1, 1, . . . . This is of course not what we
want. We would expect some averages to be maintained like

∫ 1

0

Pn+1f(t)w(t)dt =

∫ 1

0

Pnf(t)dt.

This means that the zeroth moment should be maintained, thus Ñ = 1. By Theorem 9.6.1,
this means that it should hold that

∫ 1

0
ψnk(t)w(t)dt = 0. 3

This is remedied by modifying the wavelets:

ψnk = ψonk +
∑

j

sn,j,kϕnj

with ψonk the old wavelets. To keep the biorthogonality, this requires a modification of the
dual scaling functions as well:

ϕ̃nk = ϕ̃on,k −
∑

i

sn,k,iψ̃ni,

where ϕ̃on,k are the old scaling functions.
A general (primal) lifting step is represented in Figure 9.7. This is to be interpreted as

Figure 9.7: Primal lifting step

LP
+−

BP

S S

H↑ 2↓ 2

↓ 2 G↑ 2G̃∗

H̃∗

follows: First the signal is split into a low pass and a band pass part by the (old) filters
H̃∗ and G̃∗ respectively. This corresponds to computing the Vn and the Wn part of a signal
in Vn+1. The results are then subsampled, to remove redundancy. Next a (primal) lifting
step is executed with the filter S (filter coefficients sn,k,i). At the synthesis side, the same
operations are undone in opposite order to obtain PR.

Example 9.7.2. Consider again the interpolating subdivision scheme. As we know, this
gives Ñ = 0 because the dual ϕ̃nk are delta functions. Now we modify the pre-wavelet
ψnk = ϕn+1,2k+1 as

ψnk = ϕn+1,2k+1 + Ankϕnk +Bnkϕn,k+1

with Ank = sn,k,k and Bnk = sn,k+1,k such that we have 2 vanishing moments:

∫ 1

0

w(t)ψnk(t)dt = 0 =

∫ 1

0

tw(t)ψnk(t)dt.
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Then Ñ = 2. Because Vn+1 = Vn ⊕Wn,

2n+1∑

k=0

vn+1,kϕn+1,k =
2n∑

k=0

vnkϕnk +
2n−1∑

k=0

wnkψnk,

we get after substituting the new definition of the wavelets that

vnk = vn+1,2k − Ankwnk −Bnkwn,k−1.

If for example we consider linear interpolation, then Ank = Bnk = −1/4. The result is a
wavelet with N = Ñ = 2 and it is identical to the biorthogonal CDF(2,2) wavelet. It is one
of the most popular wavelets used in applications.

In terms of filter coefficients we have: H has filter coefficients δk, since vnk = vn+1,2k.
Thus also H̃∗(z) = 1 (alternating flip does not do anything). G̃∗ has filter coefficients
(−1/2, 1,−1/2), as can be seen from (9.1) which corresponds to ψ̃nk = ϕ̃n+1,2k+1− 1

2
ϕ̃n+1,2k−

1
2
ϕ̃n+1,2k+2. Thus H̃∗(z) = 1, G̃∗(z) = − 1

2z
+ 1− z

2
and S has filter coefficients (−1/4,−1/4)

so that S(z) = 1
4

+ 1
4z

. The computations are thus reduced to the two formulas

wnk = vn+1,2k+1 −
1

2
(vn+1,2k + vn+1,2k+2) (9.2)

vnk = vn+1,2k +
1

4
(wnk + wn,k−1). (9.3)

The first one is the filtering with G̃∗ and the second one is the lifting step.
The analysis algorithm for the interpolating subdivision is thus given by

for n = m− 1(−1)0
for k = 0(1)2n: vnk = vn+1,2k

for k = 0(1)2n − 1: wnk = vn+1,2k+1 −
∑

i hn,i,2k+1vni
for k = 0(1)2n: vnk = vnk + Ankwnk +Bn,k−1wn,k−1

endfor

and the synthesis is obtained by simple inversion:

for n = 0(1)m− 1
for k = 0(1)2n: vnk = vnk − Ankwnk −Bn,k−1wn,k−1

for k = 0(1)2n − 1: vn+1,2k+1 = wn,k +
∑

i hn,2k+1,ivni
for k = 0(1)2n: vn+1,k = vn,k

endfor

3

A similar derivation can be given for the averaging subdivision scheme (see [23]).
What we have described here is in fact a primal lifting step because it modifies the primal

functions ψnk. We could also modify the dual wavelets and hence also the primal scaling
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functions ϕnk. This would correspond to a dual lifting step. Such a dual lifting is described
by the following change of basis

ψ̃nk = ψ̃onk −
∑

j

tn,j,kϕ̃nj

with ψ̃onk the old dual wavelets, and correspondingly

ϕnk = ϕon,k +
∑

i

tn,k,iψni,

where ϕon,k are the old scaling functions. Hence this corresponds to the additional transfor-
mation step

wnk = wonk −
∑

j

tn,j,kvnj.

The diagram of a dual lifting is like in Figure 9.7 with S replaced by T and the arrow of
that T -branch pointing in the other direction.

The advantage of the lifting steps is that they are conceptually very simple and extremely
easy to invert, but they are also more efficient in general. For example the formulas (9.2)-
(9.3) require 4 additions and some binary shifting. If these formulas were written explicitly
by substituting (9.2) in (9.3), this would give

vnk = −1

8
vn+1,2k−2 +

1

4
vn+1,2k−1 +

3

4
vn+1,2k +

1

4
vn+1,2k+1 −

1

8
vn+1,2k+2,

and this, together with (9.2), would require 6 additions and a multiplication with 3.
This observation makes it worth thinking about the idea of writing any filter bank as

a succession of (elementary) primal and dual lifting steps. If we start from the polyphase
representation (see Figure 4.5), then this question has a solution if we can write the polyphase
matrix P (z) as a product of matrices of the form

P (z) =

[
He(z) Ge(z)
Ho(z) Go(z)

]
=

[
1 S1(z)
0 1

] [
1 0

T1(z) 1

]
· · ·
[

1 Sm(z)
0 1

] [
1 0

Tm(z) 1

]
.

If all the filters involved are FIR, then all the functions mentioned should be Laurent poly-
nomials in z.

It turns out that such a factorization is exactly what is obtained by the Euclidean algo-
rithm, and thus such a factorization in elementary lifting steps is always possible.

The part of the scheme of Figure 4.5 which comes in front of the P̃∗-part, just takes the
even (top branch) and the odd (bottom branch) samples of the signal. This transform does
not do much and it is therefore often referred to as the lazy wavelet transform. Note that
this corresponds to the filters H̃∗(z) = 1 and G̃∗(z) = z and thus to a polyphase matrix
P = I.
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9.8 The Euclidean algorithm

For polynomials, the Euclidean algorithm computes a continued fraction expansion for the
ratio of two polynomials a0 and b0 by recursive division:

a0

b0
= q0 +

r0
b0
, set r0 = b1 and b0 = a1

= q0 +
1
a1

b1

= q0 +
1

q1 +
r1
b1

set r1 = b2 and b1 = a2

= q0 +
1

q1 +
1
a2

b2
= · · ·
= q0 +

1

q1
+

1

q2
+ · · ·

where qk is the quotient and rk the remainder for the division of ak by bk:

{
ak − bkqk = rk = bk+1

bk = ak+1
, k = 0, 1, . . .

or in short hand ak+1 = bk and bk+1 = ak ÷ bk where ÷ denotes the polynomial part of the
ratio. Thus [

ak+1 bk+1

]
=
[
ak bk

] [ 0 1
1 −qk

]
, k = 0, 1, . . .

and this can be continued until bn = 0. In that case an will be a greatest common divisor of
a0 and b0.

This algorithm works in any Euclidean domain: for example, it can be used to compute
a GCD of two integers in Z etc. The GCD is not uniquely defined. It is only fixed up to
a unit, that is an invertible element. In the set of integers, the only units are +1 and −1
because the inverse of these numbers is again an integer. For the polynomials, the set of
units are the constant plynomials.

The algorithm will always lead to a GCD because it will always end. This can be seen
as follows: Define |a| to be the absolute value if a is an integer or let it be the degree if a
is a polynomial. Then the division is so defined that in the relation of quotient-remainder
a = bq + r, the quotient q and remainder r satisfy |r| < |q|, where we define |0| = −∞.

We can make a Euclidean domain out of the set of Laurent polynomials as well. The
only thing we need is the definition of a quotient-remainder relation. We define |a| = u− l
if a(z) =

∑u
k=l pkz

k with pupl 6= 0. We shall define a quotient q = a ÷ b and a remainder
r = a−qb if they satisfy a = bq+r with |r| < |b|. Note however that quotient and remainder
are not uniquely defined. For example, in Z one can write 5 = 2 · 2 + 1 thus 5 ÷ 2 = 2,
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remainder 1, but one could as well have written 5 = 2 · 3 + (−1), thus 5÷ 2 = 3, remainder
−1. For Laurent polynomials, there is even much more freedom. We illustrate this with an
example.

Example 9.8.1. Consider the Laurent polynomials

a(z) = z−2 + 2z + 3z2 and b(z) = z−1 + z.

Since |b| = 2, we have to find a Laurent polynomial q(z) such that in |a − bq| < 2. Thus
there may only remain at most two successive nonzero coefficients in the result. Setting

q(z) = q−2z
−2 + q−1z

−1 + q0 + q1z + q2z
2

(other possibilities do not lead to a solution), we see that the remainder is in general

r(z) = (a− bq)(z) = r−3z
−3 + r−2z

−2 + r−1z
−1 + r0 + r1z + r2z

2 + r3z
3

with
r−3 = q−2

r−2 = 1− q−1

r−1 = −q−2 − q0
r0 = −q−1 − q1
r1 = 2− q0 − q2
r2 = 3− q1
r3 = −q2

Now one can choose to keep the successive coefficients rk and rk+1, for some k ∈ {−3, . . . , 2}
and make all the others equal to zero. This corresponds to a system of 5 linear equations in
5 unknowns. Possible solutions are therefore

q(z) = −2z−2 − 3z−1 + 2 + 3z r(z) = −2z−3 + 4z−2

q(z) = −3z−1 + 2 + 3z r(z) = 4z−2 − 2z−1

q(z) = z−1 + 2 + 3z r(z) = −2z−1 − 4
q(z) = z−1 + 3z r(z) = −4 + 2z
q(z) = z−1 − z r(z) = 2z + 4z2

q(z) = z−1 − z + 2z2 r(z) = 4z − 2z2.

3

In general, if

a(z) =
ua∑

k=la

akz
k and b(z) =

ub∑

k=lb

bkz
k

then we have

q(z) =

uq∑

k=lq

qkz
k

with uq = ua − lb and lq = la − ub so that |q| = |a| + |b|. The quotient has |a| + |b| + 1
coefficients to be defined. For the product bq we have |qb| = |a|+2|b|, thus it has |a|+2|b|+1
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coefficients. Thus also a − bq has that many coefficients. Since at most |b| subsequent of
these coefficients may be arbitrary and all the others have to be zero, it follows that there
are always |a| + |b| + 1 equations for the |a| + |b| + 1 unknowns. When these coefficients
are made zero in a− bq then there remain at most |b| successive coefficients which give the
remainder r.

We can conclude that the quotient and remainder always exists and thus we do have
a Euclidean domain. The units are the monomials, i.e., Laurent polynomials of the form
czk. Therefore we can apply the Euclidean algorithm and obtain a greatest common divisor
which will be unique up to a unit factor. It is remarkable that, with all the freedom we have
at every stage of the Euclidean algorithm, we will always find the same greatest common
divisor up to a monomial factor.

Assume that P and P̃ are the polyphase and the dual polyphase matrix of a PR filter bank
with FIR filters. Thus P (z)P̃∗(z) = I. This implies that detP (z) should be a monomial.
Assume without loss of generality that it is normalized such that detP (z) = 1. (Hence also
det P̃∗(z) = 1 and det P̃ (z) = 1.) With this normalization we say that the underlying filters
G and H are complementary.

Primal and dual lifting are now caught in the following theorem, which says that lifting
steps transforms a pair of complementary filters into another pair of complementary filters.

Theorem 9.8.1 (lifting). Let (G,H) be a couple of complementary filters, then

1. (G′, H) will be another couple of complementary filters iff G′ is of the form G′(z) =
G(z) +H(z)S(z2) with S(z) a Laurent polynomial.

2. (G,H ′) will be another couple of complementary filters iff H ′ is of the form H ′(z) =
G(z) +H(z)T (z2) with T (z) a Laurent polynomial.

Proof. If P is a normalized polyphase matrix for complementary FIR filters, then

P ′(z) = P (z)

[
1 S(z)
0 1

]
and P ′(z) = P (z)

[
1 0

T (z) 1

]

will also be normalized polyphase matrices for complementary FIR filters for any choice of
the Laurent polynomials S and T . In the first case for example, the even and the odd part
of H(z)S(z2) is indeed He(z)S(z) and Ho(z)S(z).

Note that the PR condition requires that if a dual lifting is applied on the synthesis side,
i.e.,

P ′(z) = P (z)

[
1 S(z)
0 1

]
,

then the analysis side should be given by

P̃ ′
∗(z) =

[
1 −S(z)
0 1

]
P̃∗(z).

Now we can describe the factorization algorithm. Suppose we start with a filter H(z) =
He(z

2) + zHo(z
2) and some other complementary filter G. The Laurent polynomials He and
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Ho are coprime. Indeed, if they were not, then they would have a nontrivial common divisor
which would divide the first column in P (z), thus also divide detP (z), but we assumed that
detP (z) = 1, so this is impossible. The Euclidean algorithm will thus compute a greatest
common divisor which we can always assume to be a constant, say K. This leads to

[He(z) Ho(z)]V1(z) · · ·Vn(z) = [K 0]

with the Vk matrices of the form

Vk(z) =

[
0 1
1 −qk(z)

]

where qk(z) are Laurent polynomials. After inverting and transposing, this reads

[
He(z)
Ho(z)

]
= W1(z) · · ·Wn(z)

[
K
0

]

where the matrices Wk(z) are given by

Wk(z) = [Vk(z)]
−T =

[
qk(z) 1

1 0

]
.

We can always assume that n is even. Indeed, if it were odd, we can multiply the filter H
with z and the filter G with z−1. They would still be complementary since the determinant of
P (z) does not change. This would interchange the role of He and Ho which would introduce
some “dummy” V0 which does only interchange these two Laurent polynomials.

Let Gc(z) be a filter which is complementary to H(z) for which Gc
e and Gc

o are defined
by

P c(z) =

[
He(z) Gc

e(z)
Ho(z) Gc

o(z)

]
= W1(z) · · ·Wn(z)

[
K 0
0 K−1

]
.

Because [
qk(z) 1

1 0

]
=

[
1 qk(z)
0 1

] [
0 1
1 0

]
=

[
0 1
1 0

] [
1 0

qk(z) 1

]
,

we can set

P c(z) =

n/2∏

k=1

[
1 q2k−1(z)
0 1

] [
1 0

q2k(z) 1

] [
K 0
0 K−1

]
.

In case our choice of Gc does not correspond to the given complementary filter G̃, then by
an application of Theorem 9.8.1, we can find a Laurent polynomial s(z) such that

P (z) = P c(z)

[
1 s(z)
0 1

]
.

As a conclusion we can formulate the following theorem.
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Theorem 9.8.2. Given two complementary finite impulse response filters
(H(z), G(z)), then there exist Laurent polynomials sk(z) and tk(z), k = 1, . . . ,m and some
nonzero constant K such that the polyphase matrix can be factored as

P (z) =
m∏

k=1

[
1 sk(z)
0 1

] [
1 0

tk(z) 1

] [
K 0
0 K−1

]
.

The interpretation of this theorem is obvious. It says that any couple of complemen-
tary filters which does (one step of) an inverse wavelet transform can be implemented as a
sequence of primal and dual lifting steps and some scaling (by the constants K and K−1).
For the forward transform in the corresponding analysis step of a perfectly reconstructing
scheme, the factorization is accordingly given by (recall P̃∗ = P−1)

P̃∗(z) =

[
K−1 0

0 K

] m∏

k=1

[
1 0

−tk(z) 1

] [
1 −sk(z)
0 1

]

or equivalently

P̃ (z) =
m∏

k=1

[
1 0

−sk∗(z) 1

] [
1 −tk∗(z)
0 1

] [
K−1 0

0 K

]
.

Figure 9.8: Analysis and synthesis phase decomposed in a sequence of lifting steps
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Example 9.8.2. The simplest of the classical wavelets one can choose are the (unnormalized)
Haar wavelets. They are described by the filters

H(z) = 1 + z−1 and G(z) =
1

2
(−1 + z−1).

The dual filters are

H̃(z) =
1

2
(1 + z−1) and G̃(z) = −1 + z−1.
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It is clear how these compute a wavelet transform: the low pass filter H̃ takes the average
and the high pass filter G̃ takes the difference of two successive samples. Note that we apply
the filters G̃∗ and H̃∗, which corresponds here simply to a time-reversal. Thus

vl,k =
1

2
(vl+1,2k + vl+1,2k+1) and wl,k = vl+1,2k+1 − vl+1,2k.

The polyphase matrix is trivially factored by the Euclidean algorithm as

P (z) =

[
1 −1/2
1 1/2

]
=

[
1 0
1 1

] [
1 −1/2
0 1

]
.

The dual polyphase matrix is factored as

P̃ (z) =

[
1/2 −1
1/2 1

]
=

[
1 −1
0 1

] [
1 0

1/2 1

]
.

Thus, to compute the forward wavelet transform, we have to apply the lazy wavelet, i.e.,
take the even and the odd samples separately. Then, applying P̃ t corresponds to a first
primal lifting step leaving the even samples untouched and computes the difference wl,k =
vl+1,2k+1 − vl+1,2k. In the next dual lifting step, this result is left untouched, but the even
samples are modified by computing vl,k = vl+1,2k + 1/2wl,k.

For the inverse transform, first one computes vl+1,2k = vl,k−1/2wl,k, and then vl+1,2k+1 =
vl+1,2k + wl,k. This is just a matter of interchanging addition and subtraction.

Note that in this simple example, there is not really a gain in computational effort, but
as our earlier examples showed, in general there is. 3

Many more examples of this idea can be found in the paper [8].
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Chapter 10

Applications

10.1 Signal processing

10.1.1 NMR Spectroscopy

Here is a simulated Nuclear Magnetic Resonance (NMR) spectroscopy experiment. A typical
experiment can be described as follows. A sample is irradiated by a magnetic field, which
is then switched off. The sample protons allign in this field, and subsequently relax to their
equilibrium state. The frequencies are characteristic for their chemical environment. The
Fourier spectrum is the signal to analyse. It consists of several sharp peaks (the spectral
lines). Some of the peaks, coming from the protons of the solvent are quite large and should
be eliminated. We have simulated such an experiment containing a large parasite peak,
which has to be subtracted. Figure 10.1 gives the signal as it is observed, corrupted by the
parasite peak and white noise. The upper plot on the right-hand-side is the “clean” signal
that we want to recover. Obviously, the parasite peak is recognized to have a maximum

Figure 10.1: The observed signal and its analysis
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the observed signal this parasite peak and the noise. First, we simulate a peak with the
function exp(−20 ∗ |t − .70|) and compute its wavelet transform (Coiflet, 3 zero moments).
This is represented in Figure 10.2 where we plotted the first 256 wavelet coefficients, the
wavelet coefficients at the different scales and the MRA of the peak. We can see that the
peak lives at low resolution, and that the “large” wavelet coefficients are located in the
neighborhood of t = 0.7. Thus we compute the wavelet transform of the signal and make
all the coefficients of the wavelet transform zero which are at level 0, 1, 2 (low resolution):
(1:7). For the subsequent levels, we make the coefficients zero that are at the boundary
(6:9), (14:17), (29:33), (62:65), to eliminate the boundary effects and finally, we set to zero
all the coefficients which are related to basis functions in the neighborhood of t = 0.7, viz.
(12:13), (25:28), (53:55), (108:113). The inverse WT is then computed which gives the result
that is plotted in the middle of the right-hand-side Figure 10.1. Finally the remaining noise
is removed using the SURE soft thresholding (see below). The final result is plotted at the
bottom. The remaining “interesting” peaks are now clearly visible.

Figure 10.2: Peak signal
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10.1.2 Music and audio signals

A music score is in fact a time-frequency representation of a audio signal. Suppose we have
recorded on tape some signal which is the representation of a piece of music. If we play the
tape at lower speed, the piece of music will have a lower pitch and will take more time; playing
the tape at a higher speed will raise the pitch and it will take less time. The problem of time-
stretching (without changing the pitch) or pitch-shifting (without changing the duration)
seems to be simple operations when we have a time-frequency (e.g. a wavelet) representation
of a signal. However, for such applications, CWT seems to be more appropriate than the
DWT. So the computations take more time. Suppose we have a CWT S(a, b) of a signal s(t).
It would then seem as simple as re-scaling the a-axis to change the pitch without changing
the duration. However, the CWT is a redundant representation and changing S(a, b), may
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transform this into something which is not the CWT of any function any more. Indeed, if
every time-frequency representation would correspond to a CWT of a signal, then it would
be easy to construct an example contradicting the Heisenberg uncertainty principle. It can
be shown that if the inverse CWT of a function S(a, b) ∈ L2(R2) is formally applied and
S(a, b) is not the CWT of a signal, then the computed result (whenever it exists) is a least
squares solution in the sense that its CWT is as close as possible to S(a, b) in the Hilbert
space L2(R2).

Thus, in conclusion, we can not just shrink for example the a-axis and compute the
inverse CWT, because that would violate the Heisenberg uncertainty principle. Somehow
this has to be compensated for by stretching the b-axis, but that is exactly what we want
to avoid. In [9] the following solution is proposed. Suppose the signal s(t) consists of N
samples. First the complex Morlet wavelet ψ(t) = eiω0te−t

2/2 is used to compute a complex
transform S(a, b). The result is a matrix where b is the column index (b = 1 : N) and a
is the row index (a = [a1, a2, . . . , as] where s is the number of scales computed; usually ak
changes on a logarithmic scale: ak = 2k/m). Here m is the number of voices per octave.
For example, if k = sm + t, then ak = 2s2t/m, which is voice t in octave s. Suppose
S(a, b) = M(a, b)eiΘ(a,b) where M is the modulus and Θ is the argument. Simply replacing
a by a/c does not give a CWT anymore. Therefore, to obtain a pitch shift with a factor c,
it is proposed to compute the inverse CWT of S ′(a′, b) = M ′(a′, b)eiΘ

′(a′,b) with the dilation
of the a-axis a′ = a/c, and setting Θ′(a′, b) = Θ(a, b), but this is compensated by a phase
shift M ′(a′, b) = M(a, b)eicΘ(a,b). Figure 10.3 represents a signal consisting of 3 sines and the
modulus and phase its complex Morlet CWT (time axis (b) is horizontal and scale axis (a)
is vertical; the value S(a, b) is represented by the gray scales of the rectangles).

Another classical applications is compression of audio signals. The techniques used are
the same as in image compression (see below).

One of the important problems to be solved in almost any audio signal processing prob-
lem is pitch tracking. Pitch in human speech is defined as the frequency of the vocal chord
vibration, or equivalently as the inverse of the in between glottal closure instances (GCI)
that is the moments when the vocal chords close during speech. The pitch is needed in
several applications like speech communication (synchronisation, transmission (see below),
synthesis), speech and speaker recognition, phonetics and linguistics (study of prosodic and
phonetic features such as tone, word stress, emotions) education (teaching intonation to the
deaf), medicine (diagnosis of diseases), musicology etc. The detection of the pitch is in fact
the detection of the successive periods in the speech signal, that is the successive “relevant”
peaks and then measure the distance between them which is usually slowly varying. This
is not so simple because there are many local maxima in the speech waveform. The rele-
vant maxima are however made prominent when several levels of the wavelet transform are
compared. The relevant maxima persist also in the low resolution levels (smooth approxima-
tions). About the computation of maxima see also the next section. An example of a pitch
detector proposed by Kadambe and Boudreaux-Bartels uses 3 levels of the dyadic wavelet
transform with the cubic spline wavelet. Other wavelets having about the same form as the
cubic spline wavelet give similar results. The maxima are detected by setting a certain rough
threshold: the peaks will come above the threshold at the successive levels. In Figure 10.4,
we took a small piece (512 samples) from the ‘Caruso’ data-set from the WaveLab packet.
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Figure 10.3: Music signal
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We used a Coiflet-5 and plotted the speech signal as well as the multiresolution analysis. It

Figure 10.4: Pitch in speech signal
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is a very noisy signal. Nevertheless, the pitch is clearly recognized.
Other techniques to recognize the pitch consist computing a (Morlet) CWT. The pitch

will then be recognized as a distinguished horizontal line in the time-scale representation that
corresponds to a fundamental frequency (at low resolution level) and some harmonics. Such
techniques are used in recognition problems. For example voiced sounds that correspond to
a vibration of the vocal chords (when uttering vowels) will have certain so called “formants”
which are characteristic frequencies. They correspond to horizontal bands in the CWT
plane. Because of the (limited) localization of the wavelets in the frequency domain, these
frequencies come forward as blurred bands. The problem is then to recognize the relevant
frequencies from that image.

Most of the speech processing methods rely on cepstrum properties. The cepstrum is
given by F−1(log |Ff |), i.e., the inverse Fourier transform of the log of the absolute value
of the spectrum. This is because the cepstrum is claimed to decorrelate and catch the
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fundamental parameters to characterize the signal.
In fact the basic problem can be described as an identification problem where the model

of the speech signal is of the form f(t) =
∑

k Ak(t) cosϕk(t)+η(t). The η(t) is a noise signal
(or approximation error considered as noise), the amplitudes Ak(t) and the phase ϕk(t) are
the parametes to catch. In fact it is crucial to find the ϕk(t) because the amplitudes can then
be easily computed. All kind of techniques using wavelets were proposed in the literature
for solving this problem. However, till the present, wavelet methods may give better results
for some of the audio processing problems, there is not an algorithm that is fast enough to
be of commercial interest.

10.1.3 ECG signals

Like in the NMR signals, also in ElectroCardioGram (ECG) the problem is often to find
peaks in the signal or more precisely to detect the elementary waveforms that compose the
signal. In Figure 10.5 we have plotted a typical behaviour of an ECG signal. (In practice, this
is also corrupted by noise.) A first step to the analysis is to identify the P-wave, the QRS and

Figure 10.5: An artificial ECG
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T-waves which are caused by atrial and ventricular polarization and depolarization. Each
of these is characterized by symmetry properties, maxima, minima, and inflection points.
From their location and values, certain clinical conclusions can be drawn.

Here again a complex CWT can be used. Suppose S(a, b) = M(a, b)eiΘ(a,b) is the complex
CWT, withM the modulus and Θ the phase. It can be shown that (under certain conditions)
the b-values where a maximum of the modulus M (and for a pronounced peak this maximum
persists through all scales) is reached, there is a point in the signal which is an extremum
(first derivative zero). For inflection points with a second derivative equal zero, the modulus
is maximal. For a maximum of M , there can be a maximum, a minimum, or an inflection
point with an horizontal tangent for s(t). In the case of a maximum, the phase is π, for a
minimum, the phase is ±π/2 (or jumps from π to 0). This helps classifying the nature of
the point.

In Figure 10.6 we have plotted a simulated signal

s(t) = A1 exp(−(t−m1)
2/b1)+A2(t−m2) exp(−(t−m2)

2/b2)+A3(t−m3)
3 exp(t−m3)

2/b3
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Figure 10.6: Maxima and minima by CWT
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with Ai = (15, 0.3, 0.0001); bi = (1700, 2500, 2500); mi = (150, 525, 900). below it, you see
the modulus squared and the phase of the complex CWT, using the Mexican hat wavelet, (2
octaves with 96 voices/octave). For the modulus, we use the convention that black is large
and white is small, For the phase, we have plotted the absolute value of the phase with black
is π and white is 0.

10.2 Image processing

Wavelet transforms have been most successful in image processing. We shall discuss briefly
image compression and image denoising.

10.2.1 Image compression

Consider an n×n image whose pixels can have 256 different gray scales. Then the storage of
the image requiresNorig = n2 bytes. If we succeed in representing a reasonable approximation
of the image with only Ncomp bytes, then we have a compression factor Norig/Ncomp. Of course
with decreasing Ncomp, we shall have poorer approximations of the image, but visually, there
will be almost no difference for relatively high compression rates, provided an appropriate
representation of the image can be found. For modern applications like transmission of
images over the internet, compression is extremely important. Also in very large images from
Geographic Information Systems (GIS) which may contain pictures taken from an airplane
that require several Gibabytes, compression is highly important. Also in High Definition
Television (HDTV), digital images are transmitted and again compression can make this
feasable.

For colored images the representation is given by 3 images for the R(ed), G(reen), and
B(lue) component. However, the RGB representation is usually transformed into a YUV
representation where Y represents brightness and U and V represent colors. The human eye
is much more sensitive for the Y component so that the UV components can be compressed
much more without visual loss of quality.

The compression of an image is performed in 3 stages:

transform quantizer coder

digital
image

−→ real
matrix

−→ integer
matrix

−→ compressed
image

An in depth discussion of the quantization and of the coding procedure is beyond the scope
of these notes and we shall only discuss this very briefly.

• Transform: If we replace the matrix of pixel values by its wavelet transform, then we
obtain a strongly decorrelated representation, more than with a DFT or other trans-
forms such as DCT (discrete cosine transform – used in JPEG) or Karhunen-Loeve
transform (basically singular value decomposition). For image compression Daubechies
wavelets or biorthogonal CDF wavelets are most commonly used. The wavelet trans-
form has many coefficients with small absolute values, while only few have a significant
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value. Typically, the histogram of the absolute value of the coefficients have a sharp
exponential decay. Replacing the small coefficients by zero will only have a minor
visual effect on the image.

• Quantization: In this step, the matrix of real wavelet coefficients is replaced by a
matrix of integers. The precision used may differ for different coefficients. For example
low frequency coefficients are represented with more precision than coefficients related
to high frequencies. The range of values for the wavelet coefficients is partitioned in
intervals and a wavelet coefficient is replaced by the index of the interval to which it
belongs. If we take 256 intervals, then every coefficient is replaced by 1 byte. The
number of intervals depends on the contrast information. For example a text image,
or in general a black-and-white image has only black or white pixels and in principle
only 2 intervals are necessary. In case of the wavelet transform, a quantization per
resolution level can improve the performance considerably. If a DCT is used, then
setting to zero some of the coefficients will have a global effect on the image because
the basis functions are not compactly supported. Therefore the JPEG standard will
subdivide the image in smaller blocks of size 8× 8 or 16× 16 and the DCT is done for
each of these blocks. High compression ratios will result in the typical blocking effect
of JPEG.

• Encoding: The coding procedure is a method to represent the integer matrix as
a sequence of bits in the most efficient way. For example the integers that appear
most frequently are represented by only few bits, while the less frequent numbers are
represented by more bits. Again coding is a science in its own and we refer to the
literature for further details.

Note: Usually a digital image is given with integer values for the pixels. With the lifting
scheme, it is possible to compute a 2D FWT of that image working only with integers [4, 3].
In that case the wavelet transform matrix will contain integers, but still a quantization,
reorganizing the coefficients in a non-equispaced partitioning is usually necessary.

Example 10.2.1. Let us make abstraction of the quantization and coding steps and see
how much can be gained from using a wavelet transform. We consider a 256 × 256 image
P shown in Figure 10.8.A, with gray scales between 0 and 255 (1 byte per pixel). We
compute the square 2D orthogonal FWT using the Daubechies filter D2. Suppose we set
all wavelet coefficients to zero that are smaller than p% of the largest coefficient. If this
results in r% nonzero coefficients, then we have obtained a compression factor C = 100/r.
When the image is reconstructed, we will get an approximation A of the original image P .
Suppose we measure the relative approximation error with respect to the Frobenius norm:
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E = ‖P − A‖F/‖P‖F , where ‖A‖F = (
∑

ij a
2
ij)

1/2. We get the following result

p C r E
0.0 1.00 100.00 0.00
0.1 4.42 22.62 0.06
0.2 15.93 6.27 0.09
0.3 30.18 3.31 0.11
0.4 43.98 2.27 0.12
0.5 58.57 1.71 0.13
0.6 71.39 1.40 0.13
0.7 85.67 1.17 0.14
0.8 100.67 0.99 0.14
0.9 118.08 0.85 0.15
1.0 135.40 0.74 0.16

The relative error versus the compression factor is plotted in Figure 10.7. In Figures 10.8 B

Figure 10.7: Relative error versus compression factor
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and C, we show the reconstructed images for p = 0.3 and p = 1.0. 3

Large images

For very large images where the data can not be handled by the computer as one block, the
image has to be tiled. The tiles could then transformed separately, but that would cause
some blocking effects, just as the DCT which divides into 8 × 8 blocks. The same problem
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Figure 10.8: Original image and 2 reconstructions from compressed forms

A B C

arises in audio signals where the signal is subdivided in frames and each frame could be
transformed separately. Again here we have boundary effects that is unacceptable for hifi
quality. These internal boundaries of the subblocks, i.e., of the tiles of the image or the
frames of the audio signal, can be overcome by computing the transform at the boundary by
borrowing some data from the neighbouring block. The number of neighbouring data that
one needs depends on the length of the filter that is used. In the case of an image this may
require some extra housekeeping to manage the blocks in the spatial as well as in the wavelet
domain. The wavelet transform corresponding to one tile will be distributed over the whole
wavelet transform domain and will be distributed over several blocks. See Figure 10.9.

Figure 10.9: Distributed transform of one tile
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Such a management system is for example implemented in a transparant way for the user
in the package WAILI.

10.2.2 Image denoising

Another important application of wavelets in image processing is denoising. The methods
vary from very naive to very complex. We give some examples.

Libraries of waveforms

The idea is to represent a signal or an image as a linear combination of waveforms (“atoms”)
which are chosen from a catalog or “dictionary”. The atoms in this dictionary may or may
not be wavelet bases. In any case the dictionary is overcomplete so that a choice has to
be made among the waveforms and of the linear combination to be taken. The part of the
signal/image that can not be represented is assumed to be noise. Examples of this type are

• Matching pursuit (Mallat and Zhang [17])

• Basis pursuit (Donoho and Chen [5])

• Best orthogonal basis (Coifman and Wickenhauser [28])

As an illustration of the “Best orthogonal basis” idea, we take this opportunity to introduce
the notion of wavelet packet. In Figure 10.10, we have shown in full lines the filter bank

Figure 10.10: Wavelet packet
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algorithm as we have explained. At each step of the algorithm, only the low resolution
part is split into a low-pass and a band-pass set of coefficients. As we have discussed it
before, this corresponds to a change of basis. V0 is transformed into [V−3|W−3|W−2|W−1],
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which corresponds to a certain choice of the basis. However, it could be decided at every
stage whether to split only the low resolution or the high resolution part. Splitting the high
resolution part would result in a representation with respect to another basis. So we have
a binary tree of possible basis functions that one could choose. The best orthogonal basis
algorithm selects the most appropriate one.

The algorithm computes the whole tree (also the dotted lines) of Figure 10.10. This
costs O(n log n) operations instead of the usual O(n). Then the selection is made “bottom
up”. This means that according to some cost function it is computed what is the cheapest
representation: the pair of low/high resolution basis or the global basis that is one level
higher. For example in Figure 10.10, 4 such decisions have to be made: either a pair of
blocks in the bottom row or the block immediately above it. This is to be recursively
repeated all the way up the tree. The result is a basis that is the cheapest one among all
the possible bases that can be constructed in this tree.

An image is a 2D signal and there we have not a binary tree but a quadtree but of course
the same principle can be applied.

There are many possible choices to measure the “cost” of a vector (or a matrix if it
concerns an image). If

∑
k vkϕk is a representation of a signal with respect to the basis ϕk,

then the cost of this representation is the “magnitude” of the coefficient vector v. The latter
can be measured as

1. 1-norm:
∑

k |vk|

2. Shannon entropy: −
∑

k v
2
k log |vk|

3. Threshold based cost:
∑

k δT (vk) where δT (x) = 1 if |x| > T and zero otherwise.

4. log energy:
∑

k log(v2
k) which is equivalent with

∑
k log |vk|.

See also [27].

Wavelet shrinking

First of all, by the very nature of the wavelet transform, we know that the finer resolution
levels will only contain detail information and that the main features of the signal/image
are captured in the low resolution levels. Therefore, taking the wavelet transform, deleting
the finest resolution levels, and backtransforming will have a smoothing effect and acts as a
very elementary linear filter, which may reduce some of the noise, but it may also blur the
original image. So we are looking for more sophisticated methods.

As we already said for image compression, many of the wavelet coefficients are small. To
fix the ideas let us start with the 1D case. An example is shown in Figure 10.11 where a
clean and a noisy signal are shown together with their (orthogonal) wavelet transforms. It
is clear that there are only a few large coefficients and that the (stationary white) noise is
transformed into (stationary white) noise on the wavelet coefficients, uniformly at all scales.
Thus, it might be a good idea to set to zero all the small wavelet coefficients which is exactly
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Figure 10.11: Clean and noisy signal and wavelet transforms
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what we did in our compression method. The scheme is quite similar:

FWT manipulate FWT−1

noisy
data

−→ wavelet
coefficients

−→ modified
coefficients

−→ denoised
data

Let us have a closer look at the mathematics. Typically, noise is considered to be stochas-
tic. We observe the signal

hi = fi + ni, i = 1, . . . N, or h = f + n

where h = (hi) is the observed signal, f = (fi) is the clean signal and n = (ni) is the noise.
Suppose that the stochastic variables ni have mean zero: E [ni] = 0 and a covariance matrix

Cij = E [(ni − Eni)(nj − Enj)] = Cij = E [ninj] .

The variance is E [n2
i ] = σ2

j . If ni is white noise, then it is uncorrelated, i.e., the covariance
matrix is a diagonal: Cij = σ2

i δi−j. The noise is called stationary if the variance σi is not
depending on i: E [n2

i ] = σ2. Thus for stationary white noise is C = σ2I. Thus if the noise
is i.i.d. (independent and identically distributed) then it is stationary and white.

Now if we take the wavelet transform of h = f +n by multiplying with the wavelet matrix
W, we obtain

Wh = Wf + Wn or y = x + v.

Thus y contains the wavelet transform of the observed signal, x of the clean signal and v
of the noise. One may consider v as noise on the clean coefficients x. Since the covariance
matrix of v is D = WCWT , it is clear that if the wavelet transform is orthogonal (i.e., if W
is an orthogonal matrix), and if n is white and stationary, then also v is white and stationary.
More generally, one can prove that the wavelet transform of stationary noise is stationary
within each resolution level. This is illustrated in Figure 10.12 where the biorthogonal FWT
of some colored stationary noise is shown. Thus, the denoising method as explained below
should be made level-dependent for practical applicability, but for simplicity, we shall assume
that we have stationary white noise, so that the reasoning holds for all scales.

Before we explain the denoising, we first define some measures for the amont of noise in
a signal. Suppose we have a clean signal/image f and a noisy version f̂ , then the Signal to
Noise Ratio (SNR) is defined as

SNR = 10 log10

‖f‖22
‖f − f̂‖22

= 10 log10

∑
k f

2
k∑

k(fk − f̂k)2
.

The Peak SNR (PSNR) is

PSNR = 10 log10

maxk f
2
k∑

k(fk − f̂k)2
.

Both are expressed in decibel (dB). Maximizing the SNR is equivalent to minimizing the
least squares or Mean Square Error (MSE)

MSE =
1

N

N∑

k=1

(fk − f̂k)2.
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Figure 10.12: Biorthogonal wavelet transform of stationary noise
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Observe that for an orthogonal wavelet transform, minimizing the MSE for the pixel values
is equivalent to minimizing the MSE for the wavelet coefficients.

We now try to estimate the clean coefficients xi from the noisy coefficients yi, for example
by shrinking the coefficients: x̂i = siyi with 0 ≤ si ≤ 1, where there is usually a preference
to leave the large coefficients untouched (si ≈ 1) and reduce the small coefficients to almost
zero (si ≈ 0). Some typical examples are given by hard thresholding and soft thresholding
as illustrated in Figure 10.13. In hard thresholding, the wavelet coefficients which are in

Figure 10.13: Thresholding

soft thresholding hard thresholding other

−δ

δ y

x̂δ

−δ

δ y

x̂δ

−δ

δ y

x̂δ

absolute value smaller than δ are replaced by zero, while the other coefficients are left
untouched. This is the most obvious choice since indeed, the noise will be represented
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by small coefficients, while small coefficients which represent something of the clean image
can be set to zero without much visual damage. However, hard thresholding is a rather
discontinuous operation and is mathematically less tractable. Therefore, one often replaces
this by soft thresholding. Figure 10.13 is self explanatory. Of course, an even smoother
strategy, like in the third part of Figure 10.13 could also be chosen.

Once the wavelet coefficients x are estimated by xδ, then an inverse wavelet transform
can be computed and we get an approximate signal/image fδ.

The hardest part of thresholding techniques is of course the determination of an optimal
or suboptimal threshold δ (possibly level dependent). In the ideal case, we should maximize
the SNR, or equivalently, minimize the MSE

R(δ) =
1

N

N∑

k=1

(f̂δk − fk)2.

For an orthogonal wavelet transform, this is equivalent with minimization of the MSE in the
wavelet domain

S(δ) =
1

N

N∑

k=1

(x̂δk − xk)2.

However, neither the clean image f , nor the clean wavelet coefficients x are known.
There are several possibilities:

• universal threshold (Donoho, Johnstone) This threshold is

δ =
√

2 lnNσ

where N is the number of data points and σ is the standard deviation of the noise.
Of course, in practice σ is not really given and should be estimated by statistical
techniques. It can be shown that, under certain restrictive conditions, it has some
optimality properties, but in general it has an over-smoothing effect and not always
appropriate for image denoising.

• SURE threshold (Donoho, Johnstone) This follows from an approximation of the
MSE function, namely, instead of minimizing the MSE function S(δ), one minimizes

SURE(δ) =
1

N

N∑

k=1

(x̂δk − yk)2 + 2σ2N1

N
− σ2

where σ is again the standard deviation of the noise and N1 is the number of coefficients
with magnitude above the threshold. One can prove that for Gaussian noise, the
expected value of SURE(δ) and of S(δ) are the same. The drawback is that again σ
has to be estimated.

• GCV threshold This is based on another “approximation” of the MSE. The Gener-
alized Cross Validation (GCV) is a notion from approximation theory which is defined
as

GCV(δ) =
1
N

∑N
k=1(x̂δk − yk)2

(N0/N)2
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where N0 is the number of wavelet coefficients that is replaced by zero. In general,
the function GCV(δ) and S(δ) have similar behavior, in the sense that the minimum
of GCV(δ) and of S(δ) are obtained for approximately the same value of δ. A typical
example is shown in Figure 10.14. The GCV has the advantage that it is computable

Figure 10.14: GCV and S
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in terms of known numbers (we do not need σ), it has linear complexity, and it is
asymptotically optimal as N →∞ [12].

Example 10.2.2. The image given in Figure 8.3 is corrupted by artificial additive
correlated noise. The result is shown in Figure 10.15. One can see the result from
a level dependent thresholding (3 levels) using the GCV estimate, soft thresholding
and using the FWT. Note the drastic increase in SNR from 4.98 dB to 16.38 dB.
Because the GCV estimate is only performing well if N is large, it is better to use the
RWT here. The averaging that can be done in the inverse transform has an additional
smoothing effect. The result is shown in the last image, which has an even larger SNR
of 18.02 dB. 3

10.3 Wavelet modulation in communication channels

To transmit digital information over some transmission channel, resources are scarce. One
is limited in bandwidth and time. If the bandwidth were infinite, then one can send the
messages of many users in a fraction of time, but since the bandwidth is usually rather
limited, and since there are many users who want to send messages over the same channel,
it is important to design methods to let as many messages as possible go through (maximal
throughput). Moreover, the system should be robust for noise, so that there is a low bit error
rate (BER). Finally, the system should be secure, i.e., not allow for an easy decoding by “the
enemy”.
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Figure 10.15: Denoising with GCV
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The channel resources can be considered as a rectangular window in the time frequency
plane. There is of course an upper bound for what can be achieved, which is called the
channel capacity.

Suppose there are N users who want to send one bit each, or equivalently, one user wants
to send one number of N bits: b = (b1, b2, . . . , bN). In the first case this is called multiple
access communication since more users have access to the same channel. In the second
case, where the message of one user is “parallellized” by a serial-to-parallel converter, this
is called multitone communication. The principle is exactly the same. Now this number b
is modulated by a set of atoms, i.e., a set of functions Φ = {ϕk}, to form a signal f(t) =∑N

k=1 bkϕk(t). Thus user k is characterized by an atom ϕk. Classically, one takes these atoms
orthogonal to each other, which will of course simplify the decoding. Also, in such a case
there will be no multiple access interference, because the users are completely decorrelated.
Typical examples are ϕk whose support does not overlap in time. This is called time division
multiple access (TDMA). Thus each user gets the whole bandwidth for a certain slice of time
to send his message. Another possibility is that the frequency content of the ϕk do not
overlap. Thus here the N users get their own limited frequency band all of the time. This
is called frequency division multiple access (FDMA). Thus the channel, represented by the
time-frequency rectangle is subdivided into horizontal or vertical slices. One could however
use some wavelet-like functions ϕk, so that the time-frequency rectangle is divided into
subrectangles in a typical wavelet-like manner as in the third picture of Figure 2.6. There may
be several reasons why one wants to distribute the message over the time-frequency window
of the channel. For example in the case of a mobile sender (telephone) the signal might be
temporarily weaker, or there might be interference because the receiver gets a superposition
of the message reflected on several physical objects. Or there can be interference from an
accidental nearby alian sender, or by a deliberate enemy scrambler. Such an interference
can be frequency dependent. It will also be more difficult to decode if the information is
spread out. What kind of wavelet functions should we use? We could use an orthogonal
wavelet basis, but assume that we use a more general frame, provided by a wavelet packet,
classically with orthogonal atoms. This is called wavelet packet multiple access (WPMA).
The fact that the transform is redundant allows some freedom for error recovery.

One could also use a non-orthogonal frame Φ. Note that in this case the users are not
totally decorrelated and there will be some multiple access interference. The frame operator
L is defined as

L : L2 → `2 : f 7→ Lf = {〈f, ϕk〉}, 〈f, ϕk〉 =

∫
f(t)ϕk(t)dt.

Its adjoint is

L∗ : `2 → L2 : b = (bk) 7→ L∗b =
∑

bkϕk.

Thus, if the received signal f is corrupted by additive noise so that we actually receive
fr = f +σ ·w (σ is the noise level and w is a normalized noise), then a least squares solution
for the decoding can be found by solving b ≈ R−1Lfr where R = LL∗ is invertible if Φ is a
frame. Of course, since we know that the solution should be a vector of bits, we should find
the closest binary solution.
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Another, simpler, and general solution is proposed by Teolis [24]. It may be described
as follows. The supports of the ϕk generate a wavelet-like tiling of the time-fequency plane.
Thus if we plot the signal f (or fr) in the time-frequency plane, then we recognise the blobs
at the tile for atom ϕk if the bit bk is 1. To be more concrete, consider an overcomplete
wavelet transform in the sense that we compute a continuous wavelet transform, but sample
it at a discrete sample set (a, b) ∈ {(tm,n, sm) : n,m ∈ Z}. Suppose we denote ψa,b with
(a, b) = (tm,n, sm) as ψnm. To reduce the possible BER, we should make the system ψnm as
dense as possible in the time-frequency rectangle R characterizing the channel limits. For
simplicity, we shall also divide the N bits into groups and give them a double index: bnm.
Then f = L∗b =

∑
n,m bnmψnm. The decoding depends on several factors:

• rs: the support factor (0 ≤ rs ≤ 1)

• δd: detection threshold

• δn: noise rejection threshold.

First we define time-frequency masks

Mnm(ω, t) =

{
1, |ψnm(t)| > rs‖ψ‖∞ & |Ψnm(ω)| > rs‖Ψ‖∞
0, else

where Ψ refers to the Fourier transform of ψ. These masks define rectangles in the rectangle
R by

Rnm = {(ω, t) : |ψnm(t)| > rs‖ψ‖∞}
⋂
{(ω, t) : |Ψnm(ω)| > rs‖Ψ‖∞}.

Their meaning is that ψnm lives essentially in the rectangle Rnm. If the design of the ψnm is
good then these rectangles should form approximately a tiling of the rectangle R. Thus, if
we plot the transmitted signal f or fr in the time-frequency plane, then it will show a blob
in rectangle Rnm if the bit bnm is 1. That is essentially how we shall read of the original
bits bnm. How shall we detect that rectangle Rnm has a blob or not, because there may be a
lot of noise on the signal that fades out the blobs? First, we compute a thresholded wavelet
transform and set

(Wψ,δnf)(ω, t) =

{
(Wψf)(ω, t), |(Wψf)(ω, t)| > δn‖Wψf‖∞
0, else

This has a denoising effect. Then we compute the energy in rectangle Rnm. If it is large
enough, we accept a bit bnm = 1, otherwise, it is assumed that the bit bnm was 0. Thus, we
compute

bnm ≈ dnm =

{
1,

∫
Rnm
|(Wψ,δnf)(ω, t)|2dtdω > δd

0, else.

10.4 Other applications

There are many more applications to be found in the literature.
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10.4.1 Edge detection

For example, since edges of a signal/image are recognized by large wavelet coefficients that
persist over several resolution levels, the wavelet transform can be used to find (sharp) edges
in a signal/image.

10.4.2 Contrast enhancement

If one has detected the edges, then one can modify the wavelet coefficients at these places,
which will give a larger edge gradient, that is enlarge the difference between the pixel values
at both sides of teh edge, thus give sharper edges, and hence will give a more pronounced
contrast in the image. In principle the increase in contrast should be perpendicular to the
edges.

We describe here a method based on the multiscale edge representation of images as
described by Mallat and Zhong [18]. Consider a separable spline scaling function ϕ(x, y),
which will play the role of a smoothing filter. Corresponding directional wavelets are defined
by partial derivatives:

ψ1(x, y) =
∂

∂x
ϕ(x, y), ψ2(x, y) =

∂

∂y
ϕ(x, y).

If ϕ is smooth enough and decays fast enough, then both ψ1 and ψ2 will be admissible
wavelet functions. The 2D dyadic wavelet transform of f ∈ L2(R2) at scale 2n, position
(x, y) and orientation r is Wr

2nf(x, y) = f ∗ψr2n , r = 1, 2 and ψr2n(x, y) = 4−nψr(2−nx, 2−ny).
The result is a vector field, called the “multiscale gradient” which we denote as

∇2nf(x, y) = (W1
2nf(x, y),W2

2nf(x, y)) =
1

4n
∇f ∗ ϕ2n(x, y).

Mallat and Zhong showed that it is possible to recover the image from the data (∇2nf(x, y))n∈Z.
Since edges correspond to sharp variations in f(x, y), one should find the maxima of the mag-
nitudes

µ2nf(x, y) = ‖∇2nf(x, y)‖
of the multiscale gradient. We say that (x, y) is a multiscale edge point in the direction

θ2nf(x, y) = arctan

[W1
2nf(x, y)

W2
2nf(x, y)

]

if µ2nf(x, y) attains there a local maximum. Suppose these local maxima appear in the
points (xi, yi), then define

A2n(f) = {[(xi, yi),∇2nf(xi, yi)]}

and let for the coarsest level J , FJ(x, y) be the the 2D wavelet transform, then

{FJ(x, y), A2n(f)1≤n≤J}
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is called the multiscale edge representation of f(x, y). Then the image can be reconstructed
from this representation. Thus all the data in between the edges can be reconstructed from
the information given in these edges. That is if f ∈ VJ , otherwise a close approximation is
found. The algorithm is iterative and quite time consuming, but at least in principle it will
work. The multiscale edge representation is very sparse and has therefore high potentials
for image compression and has also been used for image denoising.

As for contrast enhancement, this edge information can also be exploited to obtain the
desired result. Indeed, we just have to stretch the gradient and replace in the multiscale
edge representation ∇2nf(xi, yi) by k∇2nf(xi, yi) where k > 1 may or may not depend on
the level n.

10.4.3 Texture analysis

Texture is recognized by several (statistical) parameters which are characteristic for that
kind of texture. There are two possible problems for classification. Either the texture has to
be recognized. Then it should be compared with a dictionary of textures and the computed
parameters should be close enough to the parameters of the texture-class to which it belongs.
In segmentation problems however, the image has to be subdivided into several segments
which are defined by “having the same texture”. Using some classification method, it is
possible to recognize certain textures or to define the segments automatically. Since texture
has certain multiscale characteristics, wavelets may help solving these problems.

Figure 10.16: Examples of textures

Parameters that are often used are first and second order statistics. Denote the 4 subim-
ages at level n of the 2D transform by Ln(x, y), for the low resolution part and Wni(x, y),
i = 1, 2, 3 for the high resolution parts. For reasons of translation invariance and to keep
enough data, the redundant wavelet transform is used. Then one can compute for example
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first order statistics like the energies Eni or the mean deviations MDni as

Eni =
1

N

∑

j,k

(Wni(xj, yk))
2, MDni =

1

N

∑

j,k

|Wni(xj, yk)|.

Second order statistics are computed from cooccurence matrices. That is a matrix defined
as follows. First Dni is quantized so that it takes (a finite number of different) integer
values say. Then element (j, k) in the cooccurrence matrix Cδθ

ni is the joint probability of
Dni(x, y) = j and Dni(x

′, y′) = k occurring at the same time where (x′, y′) is at a distance δ
in the direction θ away from (x, y).

Anyway, in this way one computes a number of parameters that should be characteristic
for the texture. In the high-dimensional parameter space one then has to look for to what
cluster of parameters characterizing a certain texture that the computed parameters do
belong. This is a problem of classification that goes beyond the scope of these lecture notes
since it belongs to the domain of artificial intelligence.

In many cases the texture has a directional flavour: for example a brick wall or the bark
of a tree or a fabric. In that case the method should recognize textures even if they are
rotated with respect to each other. Therefore directional wavelets are used to catch this
directional information, or one computes averages to obtain rotation invariant parameters.

Such texture analysis methods do have applications in the medical sector. For example
to recognize cancer cells from healty ones or to diagnose. Also one dimensional speech
signals may be transformed into an image which is called a spectrogram. Certain defects
in the speech system of the patient give spectrograms that differ in texture from a normal
spectrogram and thus texture analysis of that spectrogram image can be used to classify the
defect.

Figure 10.17: Spectrogram for a vowel /a/, left of a normal voice, right of a dysphonic voice.
This image is taken from [25].
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10.4.4 Computer graphics

As is illustrated by the subdivision schemes, wavelets, and more especially second generation
wavelets are very appropriate for geometric modeling. Changing a wavelet coefficient will
only change the surface locally and conversely, when a bump is added to some surface, this
will only affect some wavelet coefficients locally. The theory is still being developed to handle
wavelets for surfaces defined by scattered data.

10.4.5 Numerical analysis

For the solution of certain functional equations (integral or differential equations) the prob-
lem is often linearized which gives rise to large linear systems. These matrices can be con-
sidered as an image which may have a sparse representation in the wavelet domain, allowing
for a sparse solution method.

In fact all multigrid methods used in numerical analysis fit perfectly in the idea of mul-
tiresolution analysis.

10.5 Exercises

1. We take the test signal from Figure 10.11 with white noise. We give in Figure 10.18 the
wavelet transform coefficients for the Haar wavelet, thus for filter coefficients h = {1, 1}
(left) and the wavelet transform coefficients with the coefficients h = {1, 0, 0, 1}. We
then denoise by setting all the wavelet coefficients on the 4 lowest scales to zero when
they are in absolute value less than 1. At the bottom row the reconstructed signals
are shown. Explain the differences.

2. Prove that if the variance of the signal is a constant, then the variance of the wavelet
transform is a constant in each resolution level. Is this true for any wavelet transform
(orthogonal, biorthogonal,. . . )?

3. Consider a signal s with correlation matrix C and suppose S is the 1D wavelet trans-
form of s and that S has correlation matrix D. Prove that D is a 2D wavelet transform
of C. Is it a square or a rectangular transform?
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Figure 10.18: Haar and dilated-Haar transform and reconstruction after thresholding of a
noisy signal
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Chapter 11

Software and internet

There are several software packages that deal with wavelets

1. MATLAB Wavelet Toolbox This toolbox is based on the book by Strang and Nguyen
[21]. http://saigon.ece.wisc.edu/~waveweb/Tutorials/book.html
http://www.mathworks.com/products/wavelet/

2. WaveLab MATLAB package for various wavelet manipulations. Includes reference to
Mallat’s book [16]. http://www-stat.stanford.edu/~wavelab/

3. WaveBox MATLAB package for various wavelet manipulations. http://www.wavbox.com/

4. RWT (Rice MATLAB Wavlet toolbox) MATLAB package for wavelets and filter banks.
http://www-dsp.rice.edu/software/RWT/

5. LiftPack C package for lifting scheme and several wavelet manipulations.
http://www.cs.sc.edu/~fernande/liftpack/

6. WAILI (Wavelet transform with integer lifting) Implements a basic library in C++.
Especially 2D wavelet transforms for image processing. Can also handle large images.
http://www.cs.kuleuven.ac.be/~wavelets/

Several individual “waveletters” or institutions have collected a whole lot of information on
the internet. Their web pages collect links to on-line wavelet introductions, wavelet bibli-
ography, java-applets and other interactive demonstration software, homepages of wavelet
people, preprint servers, etc. The above software links and some examples of waveletters
home pages and many other sites, some of them interactive with e.g. wavelet applets, can
be found on the course’s home page. Please consult

http://www.cs.kuleuven.ac.be/~ade/WWW/WAVE/
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List of Acronyms

BER Bit Error Rate
BIBO Bounded Input Bounded Output
CDF Cohen-Daubechies-Feauveau (wavelets)
CWT Continuous Wavelet Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DWT Discrete Wavelet Transform
ECG ElectroCardioGram
FDMA Frequency Division Multiple Access
FFT Fast Fourier Transform
FIR Finite Impulse Response
FWT Fast Wavelet Transform
GCD Greatest Common Divisor
GCI Glottal Closure Instances
GCV Generalized Cross Validation
GIS Geographic Information System
HDTV High Definition TeleVision
IIR Infinite Impulse Response
MRA MultiResolution Analysis
MSE Mean Square Error
NMR Nuclear Magnetic Resonance
OWT Overcomplete Wavelet Transform
PR Perfect Reconstruction
PSNR Peak Signal to Noise Ratio
QMF Quadrature Mirror Filter
RWT Redundant Wavelet Transform
SNR Signal to Noise Ratio
STFT Short Time Fourier Transform
SURE Stein Unbiased Risk Estimate
TDMA Time Division Multiple Access
WFT Windowed Fourier Transform
WPMA Wavelet Packet Multile Access
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a trous algorithm, 111
analysis operator, 52

backward shif operator, 13
basis pursuit, 156
BER, 162
best basis, 156
BIBO-stability, 34
biorthogonal, 49, 91–94, 97, 105, 106, 110,

113, 132, 136, 137, 152, 159
bit error rate, 162

Coiflet, 104, 118, 146
Coiflet wavelet, 149
computer graphics, 169
contrast enhancement, 166
convolution, 14–18, 33, 109, 118
CWT, 27, 110, 111, 113, 146, 147, 150

decibel, 159
delay operator, 13, 14
DFT, 12, 55, 85, 86, 152
Dirac impulse, 15, 59, 60, 62, 132
double shift orthogonality, 45, 49, 69, 85,

101
downsample, 9, 24, 41, 42, 46, 82, 120
dual frame, 54

ECG, 150
edge detection, 166
Euclidean algorithm, 138, 139

Fast Fourier Transform, 85, 86
Fast Wavelet Transform, 85, 86, 111–113,

153, 159
father function, 58
FFT, 85, 86
filter

Haar, 34, 38
moving average, 8, 34, 36, 38
moving difference, 37, 38

FIR, 34, 35, 44, 45, 84, 91, 138, 141
Fourier transform, 16, 18, 19, 23–28, 35,

40, 51, 55, 56, 62, 67, 69, 72, 74,
75, 92, 97, 100

DFT, 12
STFT, 26
WFT, 26

frame, 53, 111, 112
frame bounds, 54
frame operator, 54
frequency division multiple access, 164
FWT, 85, 86, 111–113, 153, 159

Gabor transform, 27, 28
GCD, 139
GCV, 161
glottal closure instances, 147

Heisenberg uncertainty principle, 24–26, 51,
147

high pass filter, 36–38, 40, 144

lifting scheme, 123
linear phase, 34
lossless filter bank, 45
low pass filter, 22, 35, 37, 40, 91, 144

matching persuit, 156
Mexican hat, 56, 100, 111, 122, 152
Meyer, 101
minimal phase, 35
moment, 13, 60, 91, 97–99, 103, 105, 135–

137, 146
Morlet wavelet, 28, 57, 101, 122, 147
mother function, 51, 70, 72
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MSE, 159
multiple access communication, 164
multiple access interference, 164
multiresolution analysis, 57, 70, 84, 85, 98,

111, 121, 169
multiscale edge representation, 166
multiscale gradient, 166
multitone communication, 164
multiwavelet, 95

noise, 113, 146, 150, 156, 157, 159, 161, 162
Nuclear Magnetic Resonance, 145
Nyquist sampling, 20

overcomplete wavelet transform, 111
OWT, 111

paraconjugate, 43
paraunitary, 45, 47–50, 77, 85, 120
Parseval equality, 52
PCF, 38, 46, 76
perfect reconstruction, 43–45, 47–50, 92,

136, 141
pitch tracking, 147
Poisson formula, 30
polyphase matrix, 46–49, 123, 138, 141,

143
power complementary filters, 38, 46, 76
PR, 43–45, 47–50, 92, 136, 141
pulse train, 20, 23

QMF, 38, 46, 49, 92
quadrature mirror filters, 38, 46, 49, 92

redundant wavelet transform, 111, 112
representation operator, 52
Riesz basis, 52, 58, 67
Riesz bounds, 54
RWT, 111, 112

sampling frequency, 14, 21
sampling period, 14
sampling theorem, 19, 21, 22
scale invariance, 57
scaling function, 58
Schauder basis, 52

shift invariance, 58
shift operator, 13, 16, 18, 33
SNR, 159, 161, 162
spectrum, 11, 13, 16, 18, 19, 21, 22, 24, 36,

41, 45, 145
spline, 59, 60, 63, 98, 105, 109, 131
subdivision, 123
subsample, 22, 24, 48, 111, 120, 133
SURE threshold, 146, 161
synthesis operator, 52

texture analysis, 167
threshold, 146, 160
tight frame, 54
time division multiple access, 164

unconditional basis, 52
upsample, 22, 24, 42, 85

wavelet
Battle-Lemarié, 109
biorthogonal, 49, 91–94, 97, 105, 106,

110, 113, 132, 136, 137, 152, 159
CDF, 105
Coiflet, 104, 118, 146, 149
Daubechies, 60, 71, 89, 101, 103, 152,

153
Haar, 9, 58, 59, 71, 86, 91, 99, 103, 109,

118, 143
maxflat, 101
Mexican hat, 56, 100, 111, 122, 152
Meyer, 101
Morlet, 28, 57, 101, 122, 147
second generation, 123
semi-orthogonal, 94
Shannon, 63, 100
sinc, 100, 101
symlet, 103

wavelet packet, 156
wavelet packet multiple access, 164


