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1 Introduction

We use the following notations. C denotes the complex plane, Ĉ the extended complex plane
(one point compactification), R the real line, R̂ the closure of R in Ĉ, U the open upper half-
plane, Û the closure of U in Ĉ.

A function f is called a Pick function if it is holomorphic in U and maps U into Û. A Pick
function is either a constant in R̂ or maps U into U.
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We define the integral transformations Ωµ and Sµ of the finite measure on R by

Ωµ(z) =
∫

R

1 + tz

t− z dµ(t) and Sµ(z =
∫

R

1

t− z dµ(t). (1.1)

The functions Ωµ and Sµ are Pick functions and they satisfy

Ωµ(z) = (1 + z2)Sµ(z) + z
∫

R

dµ(t). (1.2)

Let M be a Hermitian, positive definite linear functional on the space P of polynomials, and
define its moments cn by cn = M [zn], n = 0, 1, 2, . . .. A solution of the Hamburger moment
problem for {cn} (or M) is a (positive) measure µ on R which satisfies

∫
R t

n dµ(t) = cn for all
n = 0, 1, 2, . . ..

A moment problem is called determinate if it has exactly one solution, indeterminate if it has
more than one solution.

H. Hamburger (in [15–17]) showed that such measures exist, and gave conditions for the moment
problem to be determinate (i.e., to have a unique solution).

R. Nevanlinna (see [21,22]) established a one-to-one correspondence between all Pick functions
f and all solutions µ of an indeterminate moment problem, given by

Sµ(z) = −a(z)f(z)− c(z)

b(z)f(z)− d(z)
.

(Nevanlinna parameterization of the solutions.) Here a, b, c, d are certain entire transcendental
functions. It was shown by M. Riesz (see [26–28] and also [1, Ch. 3]) that the growth of these
functions are restricted as follows: For every positive constant ε, there exists a constant M(ε)
such that

|F (z)| ≤M(ε) exp{ε|z|},

where F is any of the functions a, b, c, d. Thus these function are of order less than one, or of
zero type of order one.

In [4] it was shown by Berg and Pedersen that the order (and the type) are always the same
for the functions a, b, c, d, for a given indeterminate problem.
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A parameterization of the solutions can also be given in terms of Pick functions g and the
integral transforms Ωµ through the formula

Ωµ(z) = −A(z)g(z)− C(z)

B(z)g(z)−D(z)
,

where A,B,C,D are certain entire transcendental functions with simple relationships to the
functions a, b, c, d. The functions A,B,C,D satisfy the same condition for restriction on the
growth as the functions a, b, c, d do.

For more details and further results concerning the Nevanlinna parametrization we refer to
[3,6,14,29,30] in addition to the references already cited.

In this paper we treat a rational moment problem, where the polynomials are replaced by
rational functions with poles in R̂. A Nevanlinna-type parametrization for solutions of an inde-
terminate rational problem in terms of Pick functions, the integral transforms Ωµ and certain
holomorphic functions A,B,C,D was proved by Almendral in [2]. In [12], Bultheel, González-
Vera, Hendriksen and Nj̊astad treated especially the situation where the set of singularities
for the rational functions is finite, with poles of all orders occurring. Maximal estimates of
the growth of the functions A,B,C,D in the parametrization formula at the singularities were
established, analogous to those for the classical problem. Our aim in this paper is to prove that
at each singularity the order of growth of A,B,C,D are equal.

Properties of solutions of strong (or two-point) Hamburger moment problems (where the singu-
larities alternate between the origin and infinity) were treated e.g. in [18,19,23–25].

A parametrization result for an indeterminate rational moment problem where the singularities
are contained in the open unit disk (or equivalently in the open upper half plane) was established
in [11].

The outline of the paper is as follows. In Section 2 we introduce the rational moment problem
and the associated quadrature formulas that will play an essential role in its solution. Section 3
gives the Nevanlinna parametrization of the solutions of indeterminate problem. In Section 4 we
discuss the zeros and the properties of the functions A,B,C,D. These are used in Section 5 to
give a factorization of these functions. Finally in Section 6 we prove our result on the equality
of the growth orders.
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2 A rational moment problem

We shall here consider a somewhat special case of rational moment problems. For treatment of
general problems, we refer to [7–12].

Let {αk}∞k=1 be a sequence of arbitrary points (singularities or interpolation points) in R̂ \ {0}
and set α0 =∞. We set

Γ = {α ∈ R̂ : There exists an n such that αn = α}.

For α ∈ Γ, we denote by Γα the subsequence of those αnk in {αn} for which αnk = α. We shall
here assume that Γ is finite and that every Γα is infinite. We may write Γ = {γ1, γ2, . . . , γq}.

We set

π0 = 1, πn(z) =
n∏

k=1

(
1− z

αk

)
, n = 1, 2, . . . , (2.1)

bn(z) =
zn

πn(z)
, n = 0, 1, 2, . . . .

Note that bn = bn, thus bn(x) is real for real x. The set {b0, b1, . . . , bn} is a basis for the space

Ln =

{
p(z)

πn(z)
: p ∈ Pn

}

where Pn denotes the space of polynomials of degree at most n. We define L =
⋃∞
n=0 Ln. Thus

L consists of all rational functions L of the form L(z) = p(z)
πn(z)

, p ∈ Pn, for some n = 0, 1, 2, . . ..
Note that L · L = L, since all Γα are infinite and Γ is finite.

The situation αn =∞ for all n represents the classical case, where L = P . In many situations
the point ∞ requires special consideration. To keep the presentation without such extra con-
siderations we shall in the following assume that∞ 6∈ Γ, but our main results will be valid also
when ∞ ∈ Γ. In particular when Γ = {∞}, the classical results are obtained. The reason for
0 6∈ Γ is of a technical kind. The theory where every point in R̂ may occur in Γ becomes rather
more complicated (cf. [10]).

Let M be a Hermitian, positive definite linear functional on L. For convenience we assume M
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to be normalized such that M [1] = 1. The moments µn of M are defined as

µn = M [bn], n = 0, 1, 2, . . .

A measure µ on R is said to solve the rational Hamburger moment problem for M if

∫

R

bn(t) dµ(t) = µn for n = 0, 1, 2, . . . . (2.2)

or equivalently

∫

R

f(t) dµ(t) = M [f ] for f ∈ L. (2.3)

We shall in the following be concerned mainly with indeterminate moment problems, i.e., prob-
lems where there is more than one measure satisfying (2.2) or (2.3).

Let {ϕn}∞n=0 be the sequence of functions obtained by orthonormalization of the sequence
{bn}∞n=0 with respect to the inner product 〈·, ·〉 defined by 〈f, g〉 = M [f ·g]. We fix the elements
uniquely by a unimodular factor such that the coefficient cn of bn in the expansion ϕn =∑n
k=0 ckbk is positive.

The function ϕn has the form ϕn(z) = pn(z)
πn(z)

, pn ∈ Pn \Pn−1. We shall assume a weak regularity

condition, namely pn(αn−1) 6= 0 for all n.

The functions ψn of the second kind are defined as

ψ0(z) = −z, ψn(z) = Mt

[
1 + tz

t− z {ϕn(t)− ϕn(z)}
]
, n = 1, 2, . . . .

where Mt means that M operates on the argument as a function of t. Equivalently

ψn(z) =
∫

R

1 + tz

t− z {ϕn(t)− ϕn(z)} dµ(t), n = 1, 2, . . .

where µ is any solution of the moment problem. We observe that ψn ∈ Ln and that ϕn(x) and
ψn(x) are real for real x.

5



Remark 2.1 We have here followed the convention used in [2] and [12]. The definition of ψn
differs from the definition in the monograph [9], where the following convention is used:

ψ0(z) = iz, ψn(z) = −iMt

[
1 + tz

t− z {ϕn(t)− ϕn(z)}
]
, n = 1, 2, . . . .

Similarly in [9], the integral transformation Ωµ is defined by Ωµ(z) = −i
∫
R

1+tz
t−z dµ(t).

A function of the form ϕn(z) + τn
1−z/αn−1

1−z/αn ϕn−1(z) with τn ∈ R̂ is called quasi-orthogonal of

order n. (See [9, Ch. 11.5]). For convenience we shall extend this definition to functions of the
form

anϕn(z) + τn
1− z/αn−1

1− z/αn
ϕn−1(z), τn ∈ R̂, an ∈ R,

so that also functions τn
1−z/αn−1

1−z/αn ϕn−1(z) are counted as quasi-orthogonal of order n. Except
for a possibly at most countable set X of exceptional parameter values an, τn, every quasi-
orthogonal function of order n has n simple real zeros when an 6= 0 and n− 1 simple real zeros
when an = 0 (see [9, Ch. 11.5]).

The zeros ξn,1, ξn,2, . . . , ξn,n (when an 6= 0) are nodes of a quadrature formula with positive
weights λn,1, λn,2, . . . , λn,n exact for functions in Ln−1 · Ln−1.
Similarly when an = 0, there is a quadrature formula with nodes at the n−1 zeros and positive
weights which is exact on Ln−2 · Ln−1. The basic results concerning quasi-orthogonal rational
functions and their associated quadrature formulas can be found in [9, Ch. 11.5–11.6].

Let ξ be an arbitrary fixed element in R. We define the quasi-orthogonal function ϕn(z, ξ) as

ϕn(z, ξ) =
1− ξ/αn−1

1− ξ/αn
ϕn−1(ξ)ϕn(z)− 1− z/αn−1

1− z/αn
ϕn−1(z)ϕn(ξ),

where ξ is chosen such that 1−ξ/αn
1−ξ/αn−1

ϕn−1(ξ) and −ϕn(ξ) do not belong to the exceptional set X

introduced above. Clearly ξ is a zero of ϕn(z, ξ). It follows from the determinant formula (see
e.g. [9, Ch. 11.3]) that two consecutive orthogonal functions ϕn−1(z) and ϕn(z) can not have a
common zero. We shall number the zeros of ϕn(z, ξ) such that ξ = ξ1. For the associated weight
λn,1 in the corresponding quadrature formula we shall write λn(ξ). The formula then has the
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form

∫

R

f(z) dµ(z) ≈ λn(ξ)f(ξ) +
n∑

k=2

λn,kf(ξn,k) (2.4)

when an 6= 0 and analogously when an = 0.

The weights λn,k can be expressed as λn,k =
∫
R[Ln,k(t)]

2 dµ(t) where Ln,k is the unique element
in Ln−1 for which Ln,k(ξn,j) = δk,j, k, j = 1, 2, . . . , n. In particular

λn(ξ) =
∫

R

[Ln,1(t)]2 dµ(t). (2.5)

The value of the weight can also be expressed in the form λn,k = 1/
∑n−1
j=0 [ϕj(ξn,k)]

2, k =
1, 2, . . . , n. (See [9, Ch. 11.6].) In particular

λn(ξ) =
1

∑n−1
j=0 [ϕj(ξ)]2

. (2.6)

Note that these concepts are independent of the solution µ and are only depending on the
functional M .

We shall give arguments concerning the quasi-orthogonal functions ϕn(z, ξ) that are strongly
indebted to the analogous treatment in [14].

We shall use the notation LRn for the set of elements in Ln (or Ln−1 if an = 0) where all the
coefficients with respect to the basis b0, . . . , bn are real.

Proposition 2.2 λn(ξ) is characterized by

λn(ξ) = min





∫

R

[qn−1(t)]2 dµ(t) : qn−1 ∈ LRn−1, qn−1(ξ) = 1





PROOF. Let qn−1 ∈ LRn−1, qn−1(ξ) = 1. First assume ϕn−1(ξ) 6= 0. Then by (2.4)

∫

R

[qn−1(t)]2 dµ(t) = λn(ξ)[qn−1(ξ)]2 +
n∑

k=2

λn,k[qn−1(ξn,k)]
2 ≥ λn(ξ).
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Next assume ϕn−1(ξ) = 0. Recall that then ϕn−2(ξ) 6= 0. By (2.6) we have λn(ξ) = λn−1(ξ).
We can write qn−1(z) = aϕn−1(z) + qn−2(z) with qn−2 ∈ LRn−2. Note that qn−2(ξ) = 1 since
ϕn−1(ξ) = 0. Thus

∫

R

[qn−1(t)]2 dµ(t) = a2
∫

R

[ϕn−1(t)]2 dµ(t) + 2a
∫

R

ϕn−1(t)qn−2(t) dµ(t) +
∫

R

[qn−2(t)]2 dµ(t).

The middle term vanishes by orthogonality. Hence
∫
R[qn−1(t)]2 dµ(t) ≥ ∫

R[qn−2(t)]2 dµ(t). By
the first part of the proof,

∫
R[qn−1(t)]2 dµ(t) ≥ λn−1(ξ) = λn(ξ). Thus

λn(ξ) ≤ min





∫

R

[qn−1(t)]2 dµ(t) : qn−1(ξ) ∈ LRn−1, qn−1(ξ) = 1



 .

This together with (2.5) concludes the proof. �

Clearly λn+1(ξ) ≤ λn(ξ). Thus the limit λ(ξ) = limn λn(ξ) exists. That also follows directly
from (2.6).

Proposition 2.3 Assume that a point α ∈ Γ does not belong to suppµ for some solution µ of
the rational moment problem. Then λ(ξ) = 0 for any ξ as above.

PROOF. Set d = dist(α, suppµ). Choose ξ ∈ R \ Γ such that 1−ξ/αn
1−ξ/αn−1

ϕn−1(ξ) and −ϕn(ξ) do

not belong to the countable set X introduced above, for any n, and such that dist(α, ξ) = rd,
0 < r < 1. There is for each m a smallest integer n(m) such that

(
1− ξ/α
1− z/α

)m−1

∈ Ln(m)−1.

Set qn(m)−1(z) =
(

1−ξ/α
1−z/α

)m−1
. Then qn(m)−1(ξ) = 1. For t ∈ suppµ we have |t − α| ≥ d, while

|ξ − α| = rd. Consequently

∫

R

[qn(m)−1(t)]2 dµ(t) =
∫

R

(
ξ − α
t− α

)2m−2

dµ(t) ≤ r2m−2d2m−2

d2m−2
= r2m−2.
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This result together with Proposition 2.2 and the fact that λn(m)(ξ) ≤
∫
R[qn(m)−1(t)]2 dµ(t)

implies that λn(m)
m−→ 0. Consequently λ(ξ) = 0. �

3 Indeterminate problems and the functions A,B,C,D

We shall now concentrate on indeterminate problems. It is shown in [8] (where an equivalent
setting with singularities on the unit circle is considered) that the moment problem is indeter-
minate if and only if the series

∑∞
k=0 |ϕk(z)|2 and

∑∞
k=0 |ψk(z)|2 converge for some z ∈ U \ {i}.

See also [9, Ch. 11.7]. The theorem of invariability (see [8], [9, Ch. 11.7]) states that in this
case, these series converge locally uniformly in C \ (R ∪ {i} ∪ {−i}). Analysis of the argument
shows that there is locally uniform convergence in Ĉ \ Γ. In other words: when the problem is
indeterminate, the series

∑∞
k=0 |ϕk(z)|2 and

∑∞
k=0 |ψk(z)|2 converge locally uniformly in Ĉ \ Γ.

On the other hand, when the problem is determinate, the series
∑∞
k=0 |ϕk(z)|2 and

∑∞
k=0 |ψk(z)|2

diverge for every z ∈ C \ R.

From the considerations above we obtain the following necessary condition for a problem to be
indeterminate

Theorem 3.1 If the rational moment problem is indeterminate, then Γ ⊂ suppµ for every
solution µ.

PROOF. Assume that α 6∈ suppµ for some α ∈ Γ and some solution µ. Then by Propo-
sition 2.3 we have λ(ξ) = 0 for some ξ ∈ R \ Γ. It follows then from (2.6) that the series∑∞
k=0 |ϕk(ξ)|2 diverges. This means according to the discussion above that the problem is de-

terminate. This contradiction proves the result. �

Let x0 be a fixed point in R, x0 6∈ Γ, x0 6= 0. For technical reasons, x0 is chosen such that
ψn(x0) 6= 0 and for all n, qn(αk, x0) 6= 0 for k = 1, 2, . . . , n, where qn(z, τ) is the numerator

polynomial in the quasi-orthogonal rational function ϕn(z) + τ 1−z/αn−1

1−z/αn ϕn−1(z). Such choice is

always possible, see [9, Ch. 11.5].

We set fn(z, w) = (1 − z/αn)(1 − w/αn−1) and define functions An(z) = An(z, x0), Bn(z) =
Bn(z, x0), Cn(z) = Cn(z, x0), Dn(z) = Dn(z, x0) by
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An(z) =
1

En
[fn(x0, z)ψn(x0)ψn−1(z)− fn(z, x0)ψn(z)ψn−1(x0)] (3.1)

Bn(z) =
1

En
[fn(x0, z)ψn(x0)ϕn−1(z)− fn(z, x0)ϕn(z)ψn−1(x0)] (3.2)

Cn(z) =
1

En
[fn(x0, z)ϕn(x0)ψn−1(z)− fn(z, x0)ψn(z)ϕn−1(x0)] (3.3)

Dn(z) =
1

En
[fn(x0, z)ϕn(x0)ϕn−1(z)− fn(z, x0)ϕn(z)ϕn−1(x0)]. (3.4)

Here En is a real constant, see [2], [9, Ch. 11.3]. These functions belong to Ln.

By Christoffel-Darboux type formulas (see e.g. [9, Ch. 11.3]) these functions can also be written
in the form

An(z) = (x0 − z)

[
−1 +

n−1∑

k=1

ψk(x0)ψk(z)

]
(3.5)

Bn(z) = (x0 − z)

[
−1 + x0z

z − x0

+
n−1∑

k=1

ψk(x0)ϕk(z)

]
(3.6)

Cn(z) = (x0 − z)

[
1 + x0z

z − x0

+
n−1∑

k=1

ϕk(x0)ψk(z)

]
(3.7)

Dn(z) = (x0 − z)

[
1 +

n−1∑

k=1

ϕk(x0)ϕk(z)

]
. (3.8)

Remark 3.2 These definitions differ from those of [2] and [12] by a factor zx0. This is done
in order to avoid an irrelevant pole at the origin and instead place a pole at infinity. This is
consistent with the fact that integrability of the constant functions impose one condition at
infinity on the solutions of the moment problem. (Recall that in (2.1) π0 corresponds to α0 =∞,
which is systematically made use of in [9].)

The results below follow from somewhat more general results in [2].

Theorem 3.3 The functions An, Bn, Cn.Dn converge locally uniformly in C\Γ to holomorphic
functions A,B,C,D with simple pole at ∞ and essential singularities at the points of Γ. They
are given by

A(z) = (x0 − z)

[
−1 +

∞∑

k=1

ψk(x0)ψk(z)

]
(3.9)
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B(z) = (x0 − z)

[
−1 + x0z

z − x0

+
∞∑

k=1

ψk(x0)ϕk(z)

]
(3.10)

C(z) = (x0 − z)

[
1 + x0z

z − x0

+
∞∑

k=1

ϕk(x0)ψk(z)

]
(3.11)

D(z) = (x0 − z)

[
1 +

∞∑

k=1

ϕk(x0)ϕk(z)

]
. (3.12)

PROOF. Follows from [2, Prop. 12]. �

Theorem 3.4 The formula

Ωµ(z) = −A(z)g(z)− C(z)

B(z)g(z)−D(z)
(3.13)

establishes a one-to-one correspondence between all Pick functions g and all solutions µ of the
indeterminate moment problem.

PROOF. Follows from [2, Thm. 9]. �

Remark 3.5 In [2] and [12] the convergence result in Theorem 3.3 is formulated only for z ∈
C\(Γ ∪ {i} ∪ {−i}). However, the argument builds on the convergence results for

∑∞
k=0 |ϕk(z)|2

and
∑∞
k=0 |ψk(z)|2 discussed at the beginning of this section, which, as stated there, holds for

z ∈ Ĉ \ Γ.

The following result is proved in [12].

Theorem 3.6 Let α ∈ Γ and let Vα be a disk with center at α containing no other point of Γ.
Then for every positive ε there exists a constant M(ε) such that

|F (z)| ≤M(ε) exp

{
ε

|z − α|

}

for all z ∈ Vα \ {α}, where F is any of the functions A,B,C,D.

PROOF. This is [12, Thm. 4.4]. �
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Now consider an entire function Φ, and define M(Φ, r) = max|z|=r |Φ(z)|. We recall that the
order ρ(Φ) of Φ is defined as

ρ(Φ) = inf{λ : M(Φ, r) ≤ exp{rλ} for sufficiently large r},

and the type σ(Φ) of Φ is defined as

σ(Φ) = inf{s : M(Φ, r) ≤ exp{srρ(Φ)} for sufficiently large r}.

See [5, Ch. 2], [20, Ch. 9]. We shall introduce analogous concepts for the functions F ∈
{A,B,C,D} (meaning for any holomorphic function F with a finite number of singularities).

Let Ψ be a function which is holomorphic in a deleted neighborhood Vα \ {α} of a point α, and
with a non-removable singularity at α. Set Mα(Ψ, r) = max|z−α|=r |Ψ(z)|. We define the order
ρα(Ψ) of Ψ at α as

ρα(Ψ) = inf
{
λ : Mα(Ψ, r) ≤ exp{r−λ} for sufficiently small r

}

and the type σα(Ψ) of Ψ at α as

σα(Ψ) = inf
{
s : Mα(Ψ, r) ≤ exp{sr−ρα(Ψ)} for sufficiently small r

}

Let γp ∈ Γ and let F be any of the functions A,B,C,D. We shall write Mp(F, r) for Mγp(F, r),
ρp(F ) for ργp(F ) and σp(F ) for σγp(F ). Thus

ρp(F ) = inf{λ : Mp(F, r) ≤ exp{r−λ} for sufficiently small r}

and

σp(F ) = inf{s : Mp(F, r) ≤ exp{sr−ρp(F )} for sufficiently small r}.

Theorem 3.7 Let F ∈ {A,B,C,D} and γp ∈ Γ. Then

(i) ρp(F ) < 1 or (ii) ρp(F ) = 1 and σp(F ) = 0.

PROOF. This is a rewriting of Theorem 3.6. �
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4 Zeros of the functions A,B,C,D

The quotient −A/B is obtained from (3.13) for g(z) ≡ ∞ and −C/D is obtained for g(z) ≡ 0.
Consequently there exist two solutions µ∞ and µ0 of the moment problem such that

A(z)

B(z)
= −Ωµ∞(z) and

C(z)

D(z)
= −Ωµ0(z) (4.1)

for z ∈ Ĉ \ Γ.

The functions Bn and Dn are quasi-orthogonal with respect to the solutions of the moment
problem and hence have simple real zeros. Then also B and D have only real zeros by Hurwitz’
theorem (see e.g. [20, p. 49]. The zeros are isolated since B and D are holomorphic in C \ Γ
with essential singularities at the points of Γ and simple poles at ∞. It follows that outside Γ
the quotients A/B and C/D have only poles as singularities, these occurring among the zeros
of B and D. The poles are simple since −A/B and −C/D are Pick functions by (4.1).

Proposition 4.1 The support of µ∞ consists of Γ and the poles of A/B, the support of µ0

consists of Γ and the poles of C/D. At the poles of A/B and C/D, the corresponding measures
have positive mass, while the points of Γ have zero mass. Every point in Γ is an accumulation
point for poles of A/B and of C/D.

PROOF. According to Theorem 3.1 the set Γ is contained in the support of all solutions of
the moment problem. It follows from the Perron-Stieltjes inversion formula (see e.g. [1, p. 124])
that at each pole of A/B the measure µ∞ has a mass point with value like the residuum at the
pole, which is positive since −A/B is a Pick function. At all points where A/B is holomorphic,
the measure µ∞ has mass zero. Similarly for µ0.

Since the functions in L are integrable with respect to µ∞ and µ0, each point in Γ has µ∞-
measure and µ0-measure equal to zero. From this and the fact already mentioned that Γ is
contained in suppµ∞ and suppµ0, every point of Γ must be an accumulation point for mass
points in suppµ∞ and in suppµ0. �

Proposition 4.2 All the zeros of A,B,C,D are real.

PROOF. We have already seen that the zeros of B and D are real. Since −B/A and −D/C
are Pick functions and hence are holomorphic outside R and all the zeros of B and D are real,
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it follows that A and C are different from zero outside R. �

Proposition 4.3
a) A and B have no common zeros
b) C and D have no common zeros
c) A and C have no common zeros
d) B and D have no common zeros

PROOF. We find by calculation from the definitions (3.1-3.4) and use of the determinant
formula (cf. e.g. [9, Ch. 11.2]) that

An(z)Dn(z)−Bn(z)Cn(z) = (1 + z2)(1 + x2
0)

for z 6∈ Γ. Hence also

A(z)D(z)−B(z)C(z) = (1 + z2)(1 + x2
0) (4.2)

for z 6∈ Γ. Possible common zeros are real by Proposition 4.2. Thus z = ±i are not common
zeros, and the result follows from (4.2). �

Proposition 4.4 All the zeros of A,B,C,D are simple.

PROOF. This follows from Proposition 4.3 together with the fact that −A/B, B/A, −C/D
and D/C are Pick functions and hence have simple poles. �

Proposition 4.5 a) Between two consecutive zeros of B there is exactly one zero of A, and
vice versa.

b) Between two consecutive zeros of D there is exactly one zero of C, and vice versa.

PROOF. a) Let {xk}∞k=1 denote a numbering of the zeros of B, or equivalently the poles of
A/B. We then have

−A(z)

B(z)
= Ωµ∞(z) =

∞∑

k=1

λk(B)
1 + xkz

xk − z
,

14



where λk(B) > 0 for all k. Near xj the term 1+xjz

xj−z dominates in the series.

Let ξ and η be two consecutive zeros of B, ξ < η. We then have

lim
x→ξ+

(
−A(x)

B(x)

)
= −∞ and lim

x→η−

(
−A(x)

B(x)

)
= +∞.

Hence by the intermediate value theorem, there is at least one value ζ ∈ (ξ, η) such that
A(ζ)/B(ζ) = 0, and consequently A(ζ) = 0.

Since B/A is a Pick function, there exists by Herglotz-Riesz representation theorem (see e.g. [1,
p. 91]) a real constant a, a positive constant b and a (positive) measure ν∞ such that

B(z)

A(z)
= a+ bz + Ων∞(z).

As in the case of µ∞, the support of ν∞ consists of Γ and the poles of B/A, i.e., the zeros off
A. Let now {yk}∞k=1 denote a numbering of these zeros. Then

B(z)

A(z)
= a+ bz +

∫

Γ

1 + tz

t− z dν∞(t) = a+ bz +
∞∑

k=1

λk(A)
1 + ykz

yk − z
,

where λk(A) > 0 for all k. In the same way as above, we conclude that between two consecutive
zeros of A there is at least one zero of B.

From these results the statement of a) follows.

b) The argument is completely analogous to the argument under a). �

Proposition 4.6 Between two consecutive zeros of B there is exactly one zero of D and vice
versa.

PROOF. Using the definitions (3.1-3.4) we find by direct calculation

Bn(z)Dn(ζ)−Bn(ζ)Dn(z) =E−2
n fn(x0, x0)[ψn(x0)ϕn−1(x0)− ψn−1(x0)ϕn(x0)]

·[fn(z, ζ)ϕn(z)ϕn−1(ζ)− fn(ζ, z)ϕn−1(z)ϕn(ζ)].

15



By using the determinant formula (recall e.g. [9, Ch. 11.2]) on the first brackets to the right
and the Christoffel-Darboux formula (recall e.g. [9, Ch. 11.3]) on the last brackets, we obtain

Bn(z)Dn(ζ)−Bn(ζ)Dn(z) = (1 + x2
0)(z − ζ)

[
1 +

n−1∑

k=1

ϕk(z)ϕk(ζ)

]
.

Hence

B(z)D(ζ)−B(ζ)D(z) = (1 + x2
0)(z − ζ)

[
1 +

∞∑

k=1

ϕk(z)ϕk(ζ)

]
. (4.3)

Differentiation of (4.3) with respect to ζ for ζ = z gives

B(z)D′(z)−B′(z)D(z) = −(1 + x2
0)

[
1 +

∞∑

k=1

ϕk(z)2

]
. (4.4)

The right-hand side of this formula is negative for all real z.

Let ξ and η be two consecutive zeros of B, ξ < η. Then B′(ξ) and B′(η) have opposite sign by
Proposition 4.4. ConsequentlyD(ξ) andD(η) have opposite sign by (4.4). From the intermediate
value theorem it then follows that there is at least one zero ζ of D in (ξ, η).

In exactly the same way we conclude from (4.4) that between two consecutive zeros of D there
is at least one zero of B.

From these results the statement of the proposition follows. �

Let Φ be an entire function with a sequence {zk}∞k=1 of zeros, such that |zk| ≥ δ > 0 and ordered
such that {|zk|} tends non-decreasingly to infinity. We recall that the convergence exponent τ(Φ)
of Φ is defined as

τ(Φ) = inf

{
t ∈ R :

∞∑

k=1

1

|zk|t
<∞

}

and the genus κ(Φ) of Φ is defined as

κ(Φ) = max

{
t ∈ Z :

∞∑

k=1

1

|zk|t
=∞

}
.
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See [5, Ch. 2]. [20, Ch. 10].

Now let Ψ be a function which is holomorphic in a deleted neighborhood Vα \ {α} of a singular
point α. Assume there are infinitely many zeros of Ψ in Vα\{α}, and let {zk}∞k=1 be a numbering
of these zeros, ordered such that {|zk−α|} is non-increasing. In analogy with the concepts above
we define the convergence exponent τα(Ψ) of Ψ at α as

τα(Ψ) = inf

{
t ∈ R :

∞∑

k=1

|zk − α|t <∞
}

and the genus κα(Ψ) of Ψ at α as

κα(Ψ) = max

{
t ∈ Z :

∞∑

k=1

|zk − α|t =∞
}
.

(These definitions are clearly independent of the neighborhood Vα as long as Vα contains no
other singularities than α.)

Let F denote any of the functions A,B,C,D and let {zp,j}∞j=1 denote the zeros of F in a
neighborhood of γp ∈ Γ, chosen such that every zero of F occurs exactly once as a zp,j, ordered
such that {|zp,j−γp|}j is non-increasing. We shall write τp(F ) and κp(F ) for τγp(F ) and κγp(F ).
Thus

τp(F ) = inf



t ∈ R :

∞∑

j=1

|zp,j − γp|t <∞


 (4.5)

and

κp(F ) = max



t ∈ Z :

∞∑

j=1

|zp,j − γp|t =∞


 . (4.6)

(These definitions are clearly independent of the exact partition of the sequence of zeros of F
in subsequences {zp,j}j.)

Theorem 4.7 For each γp ∈ Γ the following equalities hold:

τp(A) = τp(B) = τp(C) = τp(D)

17



κp(A) = κp(B) = κp(C) = κp(D).

PROOF. This result follows immediately from the definitions (4.5-4.6) and Propositions 4.5-
4.6. �

5 Factorization of the functions A,B,C,D

Let {ζj}∞j=1 be a sequence in C, ζj 6= 0 for all j, such that {|ζj|} tends monotonically to infinity.
The Weierstrass product determined by this sequence is the expression

Φ(ζ) =
∞∏

j=1

(
1− ζ

ζj

)
exp




ζ

ζ1

+
ζ2

2ζ2
2

+ · · ·+ ζj

jζjj



 .

This product converges locally uniformly in C, and thus Φ represents an entire function with
zeros exactly at the points ζj. See e.g. [5, Ch. 20], [20, Ch. 10].

Now let F denote any of the functions A,B,C,D. Let the zeros different from 0 and ∞ be
partitioned in groups {zp,j}∞j=1 as described in Section 4. Recall that then |zp,j − γp| → 0 non-
increasingly, and every zero of F (except possibly 0 and ∞) belongs to exactly one of these
subsequences.

Let ζ = 1
z−γp , ζp,j = 1

zp,j−γp . Then ζ → ∞ as z → γp and ζp,j
j→ ∞. Since the Weierstrass

product

S∞p (ζ) =
∞∏

j=1

(
1− ζ

ζp,j

)
exp





ζ

ζp,1
+

ζ2

2ζ2
p,2

+ · · ·+ ζj

jζjp,j





represents an entire function with zeros at {ζp,j}j, the function

Sp(z) = S∞p

(
1

z − γp

)
(5.1)

represents a function which is holomorphic in Ĉ\{γp} with zeros at the points zp,j, j = 1, 2, . . ..
Note that if 0 belongs to one of the sequences {ζp,j}j, then the product (5.1) has a factor
z/(z − γp). We shall call this function a Weierstrass product at γp.
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In the proposition below, F denotes as before any of the functions A,B,C,D.

Proposition 5.1 The function F can be factorized as

F (z) = R(z)
q∏

p=1

Sp(z)Tp(z).

R is a rational function with all poles and zeros in the set Γ except for a simple pole at ∞, Sp
is holomorphic in Ĉ \ {γp} defined by the Weierstrass product (5.1), and Tp is holomorphic in

Ĉ \ {γp} without zeros.

PROOF. The argument here is essentially a modification of arguments found in [13, Sections
65–67].

We first assume that F (0) 6= 0. Then we define

f(z) =
F (z)

∏q
p=1 Sp(z)

. (5.2)

This function is holomorphic in C \ Γ with a simple pole at ∞ and without zeros.

At z =∞ we have

f(z) =uz + v +
w

z
+ · · ·

f ′(z) =u− w

z2
− · · ·

f ′(z)

f(z)
=

1

z
+

s

z2
+ · · · .

Thus f ′/f is holomorphic in Ĉ \ Γ and with a simple zero at ∞.

For every γp ∈ Γ there is a Laurent series expansion of f ′/f around γp. Let

hp(z) =
a

(p)
−1

z − γp
+
∞∑

k=2

a
(p)
−k

(z − γp)k
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denote the principal part of this series. We may then write

hp(z) =
a

(p)
−1

z − γp
+ g′p(z), gp(z) = −

∞∑

k=2

a
(p)
−k

(k − 1)(z − γp)k−1
. (5.3)

Note that hp represents a holomorphic function in Ĉ \ {γp}. The difference f ′(z)
f(z)
−∑q

p=1 hp(z)

is thus holomorphic in all of Ĉ, and is consequently a constant. Thus

f ′(z)

f(z)
= b+

q∑

p=1

a
(p)
−1

z − γp
+

q∑

p=1

g′p(z). (5.4)

By integrating along a small circle around γp we see that only the integral of f ′(z)
f(z)

and of
a
(p)
−1

z−γp
contributes to the value. The integral of f ′(z)

f(z)
is determined up to a multiple of 2πi. It follows

that the same is the case for the integral of
a
(p)
−1

z−γp , and hence a
(p)
−1 is an integer. The behavior at

infinity (cf. (5.3)) implies that b = 0 and
∑q
p=1 a

(p)
−1 = 1. Thus

f ′(z)

f(z)
=

q∑

p=1

a
(p)
−1

z − γp
+

q∑

p=1

g′p(z) with
q∑

p=1

a
(p)
−1 = 1. (5.5)

Integration gives

log f(z) =
q∑

p=1

a
(p)
−1 log(z − γp) +

q∑

p=1

gp(z) + C

and by exponentiation we then obtain

f(z) = eC
q∏

p=1

(z − γp)a
(p)
−1 ·

q∏

p=1

egp(z).

From (5.2) this may be written as

F (z) = R(z)
q∏

p=1

Sp(z)Tp(z) (5.6)
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where Sp(z) denotes the Weierstrass product at γp determined by the sequence {zp,j}j, Tp(z)

denotes the holomorphic function egp(z) in Ĉ \ {γp}, which is without zeros, and R(z) denotes

the rational function eC
∏q
p=1(z − γp)a

(p)
−1 . Because of (5.5), R(z) has a simple pole at ∞.

Now assume that F (0) = 0, then the proof goes along the same lines with only minor modifi-
cations. We now set

f(z) =
F (z)

z
∏q
p=1 Sp(z)

,

so that it is still holomorphic in C \ Γ without zeros and a simple pole at ∞. Again f ′/f is
holomorphic in Ĉ \ Γ, however the zero at ∞ is not simple but double.

This implies that in the formula (5.4) for f ′/f , not only b = 0, but also
∑q
p=1 a

(p)
−1 = 0.

Integration and exponentiation results in (5.6), where now R(z) = zeC
∏q
p=1(z − γp)

a
(p)
−1 , but

because
∑q
p=1 a

(p)
−1 = 0, this is again a rational function with a simple pole at ∞ as claimed in

the Proposition.

�

We introduce the function Fp by

Fp(z) = Sp(z)Tp(z).

For a fixed p we again consider the transformation z → ζ = 1
z−γp , ζp,j = 1

zp,j−γp .

We define

S∞p (ζ) = Sp(z), T∞p (ζ) = Tp(z), and F∞p (ζ) = Fp(z).

These are entire functions. S∞p is a (classical) Weierstrass product, T∞p has no zeros, and
F∞p (ζ) = S∞p (ζ)T∞p (ζ).

We recall the definitions of ρ(Φ), ρp(Ψ), σ(Φ), σp(Ψ), τ(Φ), τp(Ψ), κ(φ) and κp(Ψ) from Se-
tions 3–4.

Proposition 5.2 The following equalities hold:
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ρp(F ) = ρp(Fp) = ρ(F∞p ) (5.7)

σp(F ) =σp(Fp) = σ(F∞p ) (5.8)

τp(F ) = τp(Fp) = τ(F∞p ) (5.9)

κp(F ) =κp(Fp) = κ(F∞p ) (5.10)

PROOF. This follows directly from the definitions and the fact that the values of the rational
function R and of the functions Fr for r 6= p (which are holomorphic at γp) have no effect in
the definitions. �

Let {ζj}∞j=1 be a sequence of points in C such that {|ζj|} tends non-decreasingly to infinity.
Assume that there is a largest natural number κ such that

∑∞
j=1

1
|ζj |κ diverges. Then the infinite

product

Φ(z) =
∞∏

j=1

(1− ζ

ζj
) exp

{
ζ

ζj
+

ζ2

2ζ1
j

+ · · ·+ ζκ

κζκj

}

converges locally uniformly in C and represents an entire function. See e.g. [5, Ch. 2], [20,
Ch. 20]. Such products are called canonical products or Hadamard products. The function Ψ(z) =
Φ(ζ) = Φ( 1

z−γp ) is then holomorphic in Ĉ \ {γp}. Such products are called canonical products

at γp or Hadamard products at γp. See e.g., [5, Ch. 2], [20, Ch. 10].

Theorem 5.3 Let F be any of the functions A,B,C,D. Then it can be decomposed in the
following way:

F (z) = R(z)
q∏

p=1

Pp(z)Qp(z). (5.11)

Here R(z) is a rational function with all zeros and poles in the set Γ except for a simple pole at
∞, Pp(z) is a canonical product at γp determined by the zeros {zp,j}j and Qp(z) is a function

holomorphic in Ĉ \ {γp} without zeros.

PROOF. If follows from (5.7), Proposition 5.2 and Theorem 3.7 that ρ(F∞p ) ≤ 1. From the
classical theory of entire functions of finite order it follows that τ(F∞p ) ≤ ρ(F∞p ) (see e.g. [5,
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Ch. 2], [20, Ch. 10]), hence in our case κ(F∞p ) ∈ {0, 1}. Let P∞p denote the canonical product
determined by the sequence {ζp,j}j = { 1

zp,j−γp}. I.e.,

P∞p (ζ) =
∞∏

j=1

(1− ζ

ζp,j
) exp

{
ζ

ζp,j
+

ζ2

2ζ2
p,j

+ · · ·+ ζκ

κζκp,j

}

where κ = κ(F∞p ). The function

Q∞p (ζ) =
F∞p (ζ)

P∞p (ζ)
(5.12)

is then an entire function without zeros.

Set Pp(z) = P∞p (ζ), Qp(z) = Q∞p (ζ) with ζ = 1
z−γp . Then by (5.12) and Proposition 5.1 we

conclude that F (z) is of the form (5.11) where R,Pp and Qp have the stated properties. �

6 Equality of orders

From the classical theory of entire functions refered to above it follows that when an entire
function Φ has finite order ρ(Φ), then

Φ(ζ) = P (ζ) exp{q(ζ)}

where P is a canonical product and q is a polynomial of degree at most ρ(Φ). Furthermore,

ρ(Φ) = max{τ(Φ), deg q}. (6.1)

See e.g., [5, Ch. 2], [20, Ch. 10]. Thus in our case, Q∞p (ζ) = exp{q∞(ζ)}, with deg q∞ ≤ 1.

Proposition 6.1 For each γp ∈ Γ, the following equality holds:

ρ(F∞p ) = τ(F∞p ).

PROOF. The proof follows closely the argument in [4]. For the sake of completeness we wish
to present the argument here. Note that the function F∞p does not arise as a function in a
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Nevanlinna matrix for a classical moment problem and thus the result does not follow from [4]
directly. However the argument in [4] uses only properties that we know F∞p to have.

We know that ρ(F∞p ) ≤ 1

(a) ρ(F∞p ) = 0. Clearly
∑∞
j=1

1
|ζp,j |t =∞ for t ≤ 0, hence τ(F∞p ) ≥ 0, and thus ρ(F∞p ) = τ(F∞p )

by (6.1).
(b) 0 < ρ(F∞p ) < 1. From (6.1) follows that deg q = 0 and ρ(F∞p ) = τ(F∞p ), since deg q is an

integer.
(c) ρ(F∞p ) = 1

(i) κ(F∞p ) = 1. Then by the definition of κ(F∞p ) we see that
∑∞
p=1

1
|ζp,j | = ∞, hence

τ(F∞p ) ≥ 1. Then from (6.1) follows that ρ(F∞p ) = τ(F∞p ).
(ii) κ(F∞p ) = 0. Since ρ(F∞p ) is an integer and σ(F∞p ) = 0 by Theorem 3.7 and (5.8), a

theorem of Lindelöf (see e.g. [5, Ch. 9.2]) implies that deg q∞ = ρ(F∞p )− 1 = 0. Thus
by (6.1) ρ(F∞p ) = τ(F∞p ). �

Theorem 6.2 Consider an indeterminate rational moment problem with a finite set γ of sin-
gularities, all singularities of infinite order. Then for each γp ∈ Γ the following equalities hold:

ρp(A) = ρp(B) = ρp(C) = ρp(D).

PROOF. This follows immediately from Theorem 4.7, Proposition 5.2 and Proposition 6.1. �
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[17] H. Hamburger. Über eine Erweiterung des Stieltjesschen Momentsproblem III. Math. Ann.,
82(3):168–187, 1921.

[18] W.B. Jones and O. Nj̊astad. Orthogonal Laurent polynomials and strong moment theory. J.
Comput. Appl. Math., 105:51–91, 1999.

[19] W.B. Jones, O. Nj̊astad, and W.J. Thron. Orthogonal Laurent polynomials and the strong
Hamburger moment problem. J. Math. Anal. Appl., 98:528–554, 1984.

[20] A. Markushevich. Theory of functions of a complex variable, volume 2. Chelsea Publishing Co.,
New York, 1967.

[21] R. Nevanlinna. Asymptotische Entwickelungen beschränkter Funktionen und das Stieltjessche
Momentenproblem. Ann. Acad. Sci. Fenn. Ser. A., 18(5):53pp., 1922.

25
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