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1. Introduction. Data-sparse representations of elements living in the tensor
product of (finite dimensional) vector spaces have become an intensely studied subject
in recent years, yielding a myriad of representations, such as the higher-order singular
value decomposition [23, 55, 56], CANDECOMP/PARAFAC decomposition (CPD)
[15, 31], Block-term decompositions [22], H-Tucker [28, 30] and Tensor Trains [44],
each with varying assumptions and divergent applications. Among these, the CPD is
the oldest; according to [11], its roots (for symmetric tensors) can be traced back to
algebraic geometry in the middle of 19th century as featured in the work of Sylvester.
In contemporary terminology, a tensor A ∈ Fn1×n2×···×nd is said to admit an r-term
CPD if it can be written as

A =
r∑

i=1

a
(1)
i ⊗ a

(2)
i ⊗ · · · ⊗ a

(d)
i (1.1)

where a
(k)
i ∈ Fnk and ⊗ denotes the Kronecker product; it is the topic of this paper.

The CPD is employed in a wide variety of scientific disciplines as a tool for
data-driven analysis; much of the current interest in the CPD originated in the psy-
chometrics community from the works of Carroll and Chang [15] and Harshman [31].
This body of work became known around 1980 in the field of chemometrics where
it is now well-entrenched [49]. Appellof and Davidson [4] proposed the CPD as an
analytical technique for fluorescence spectroscopy; they showed that the underlying
physical process exactly admits a CPD. Given the sampled tensor, its CPD reveals
the excitation and emission spectra for each of the true chemical compounds in the
fluorescent mixture. We refer the reader to the review articles [37,41] for other appli-
cations within a data-driven setting.

More recently, the CPD has been used as a data-sparse representation for high-
dimensional problems. For instance, Beylkin and Mohlenkamp [7] tackle the solution
of linear systems whereby the solution is sought in CPD format; similarly such en-
deavors have been undertaken for other data-sparse representations, see [5, 38, 43].
Proper generalized decompositions methods [2,20] seek iteratively extended CPDs for
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2 VANNIEUWENHOVEN, NICAISE, VANDEBRIL, MEERBERGEN

obtaining low-rank approximations to the solution of high-dimensional partial differ-
ential equations (PDE), allowing one to reduce the solution of one high-dimensional
PDE to the solution of several low-dimensional PDEs.

The subject of this paper concerns a CPD that mirrors the fundamental prop-
erty of the singular value decomposition of matrices: the approximation theorem of
Schmidt [47, 53] and Eckart and Young [26]. Consider the singular value decomposi-
tion of A ∈ Fm×n, with F = C or R:

A = USV T =

R∑

i=1

σiui ⊗ vi,

where R ≤ min{m,n} is the rank of A, S = diag(σ1, σ2, . . . , σR) ∈ RR×R where the
diagonal elements are assumed to be nonzero and sorted by decreasing magnitude,
and U and V are matrices with orthogonal columns in the Euclidean inner product.
Note that we follow the convention from [29] using the transpose rather than the
Hermitian conjugate so that the above definition coincides with the definitions in the
case of higher-order tensors. According to the Schmidt-Eckart-Young theorem, the
best rank-r approximation in the Euclidean topology is given by retaining the first r
terms in the above sum. We are interested in a natural generalization of the Schmidt-
Eckart-Young theorem to the CPD of tensors; i.e., we ask ourselves whether there
exists a CPD of A ∈ Fn1×n2×···×nd as in (1.1) such that retaining the first r′ < r
terms yields an optimal solution to the approximation problem:

r′∑

i=1

a
(1)
i ⊗ · · · ⊗ a

(d)
i ∈ arg min

u
(k)
j ∈Fnk

∥∥∥∥∥∥
A −

r′∑

i=1

u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(d)
i

∥∥∥∥∥∥
, (1.2)

where the norm is the Frobenius norm, also known as the Hilbert-Schmidt and `2
norm. We propose to call such a decomposition a Schmidt-Eckart-Young (SEY) de-
composition, and sometimes refer to it as an optimally truncatable decomposition.

The definition of the SEY decomposition is not vacuous; it is shown in this paper
that orthogonally diagonalizable tensors [18, 58] satisfy the above conditions. Such
tensors appear in several applications and have been extensively studied [3,6,14,18,46,
58]; nevertheless, it does not appear to be known that this decomposition is optimal in
the above sense. In fact, we prove that orthogonal diagonalizability is not a necessary
condition for an SEY decomposition; a new class of optimally truncatable tensors is
revealed in this paper.

It appears to be a widespread conviction among researchers that an SEY decom-
position is not feasible for tensors; however, general results on the (non)existence of
the SEY decomposition are scarce over the real field and lacking over the complex
field. In this paper, we settle the case of complex tensors, and prove that a generic
tensor indeed does not admit an SEY decomposition. We cover the known results in
the next paragraphs.

Orthogonal tensor decompositions. Kolda [35, 36] investigated several orthogonal
tensor decompositions as possible candidates for a Schmidt-Eckart-Young decompo-
sition. In [36], it was proved that an orthogonal tensor decomposition may not be
optimal for a specific set of tensors over the real field, providing the first direct evi-
dence that an SEY decomposition does not always exist. While [35] considers several
orthogonal decompositions, it has, to our knowledge, never been proven that orthog-
onality is a necessary condition for optimal truncatability. We prove that a form
of orthogonality not considered before in the literature is necessary, while another
unconsidered form of orthogonality, generalizing results from [18,35], is sufficient.
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Ill-posedness. One popular argument for dismissing the existence of an SEY de-
composition involves the ill-posedness of approximation problem (1.2), i.e., the solu-
tion may not exist. This problem arises because the set of rank-r tensors is not closed,
a result at least implicitly know to classical algebraic geometers, particularized by Bini
et al. [8–10], and recently scrutinized by de Silva and Lim [24]. The openness of the
set of rank-r tensors implies that some rank-r tensors can be approximated arbitrarily
well by a tensor of rank rb < r. The smallest of these ranks rb is called the border rank
of the tensor [10]. A tensor A whose border rank rb = rank⊗(A) differs from its rank
r = rank⊗(A) will be referred to as an open boundary tensor (OBT). Approximation
problem (1.2) is then ill-posed if all solutions to

min
rank⊗(B)≤r

‖A − B‖

are OBTs. As an SEY decomposition can only exist if a solution exists, the following
corollary is established:

Corollary 1.1. An order-d tensor A ∈ Fn1×···×nd does not admit an SEY
decomposition if its best rank-r approximation does not exist for some r.

Several specific examples of such tensors exist. The occurrence of OBTs was
already exploited by Bini et al. [8–10] in 1979 to derive original fast algorithms for
approximate, but arbitrarily accurate, matrix multiplication. Another example is the
rank-3 tensor u⊗u⊗v+u⊗v⊗u+v⊗u⊗u, with u,v ∈ Rn linearly independent,
which can be approximated arbitrarily well by a tensor of rank 2 [24]. Other specific
examples of OBTs were investigated by Paatero [45]. In [51], Stegeman considered
the occurrence of OBTs in some specific tensor spaces with two typical ranks.1

A more general result was obtained by Stegeman in [50,52], in which it is shown
that OBTs can occur in real tensor spaces of the form 2 × p × q with positive volume
when approximating a tensor of supergeneric2 rank by one of the generic rank. Results
for arbitrary third-order real tensor spaces were obtained by de Silva and Lim in 2008.
They proved that, in such a space, the set of tensors not admitting an optimal rank-
2 approximation has positive measure [24, Thm. 8.4]; in other words, by selecting
“random” tensors, one has a nonzero probability of obtaining one without a best rank-
2 approximation. de Silva and Lim’s theorem cannot be extended straightforwardly
to complex tensors, as is clearly stated by its authors [24, §9]. Nevertheless, as an
immediate corollary of this theorem, one obtains the following result.

Corollary 1.2. The set of third-order tensors in Rn1×n2×n3 that do not admit
an SEY decomposition is nonempty and of positive Lebesgue measure.

Beyond ill-posedness. The ill-posedness of approximation problem (1.2) appears
to be cited often as the definite reason why an SEY decomposition cannot exist. For
instance, the review article [37] states:

“de Silva and Lim [69] show, moreover, that the set of tensors of a
given size that do not have a best rank-k approximation has positive
volume (i.e., positive Lebesgue measure) for at least some values of
k, so this problem of a lack of a best approximation is not a “rare”
event.”

The above statement is valid only for third-order real tensors; Corollary 1.2 cannot
be generalized to higher orders or complex tensor spaces by using the techniques

1Due to the lack of algebraic closedness of the real field, there may be multiple ranks occurring
with a positive measure in the space [24,39].

2The generic rank of a real or complex tensor space is, by definition, the smallest R such that
the Zariski closure of the set of tensors of rank ≤ R considered over C is the encompassing space
Cn1×···×nd [39, §5.2.1]. A tensor of supergeneric, respectively subgeneric, rank is one whose rank is
larger, respectively smaller, than the generic rank.
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from [24, §8] because they are founded on a classification of the (finite number of)
orbits of the general linear group GL2(R)×GL2(R)×GL2(R), which is, as the authors
clearly state in [24, p. 1116],

“in general, not possible for tensors of arbitrary size and order
simply because the dimension or “degrees of freedom” of Rd1×···×dk

exceeds that of GLd1,...,dk
(R) as soon as d1 · · · dk > d2

1 + · · · + d2
k

(which is almost always the case).

However, even by allowing additional parameters, a practical complete classification
of the invariants and orbits of finite dimensional F-algebras is unlikely to exist due to
“wild” algebras, at least in the case of complex tensor spaces. Drozd’s famous Tame
and Wild theorem [25] namely states that algebras can be subdivided into two sets:
“tame” and “wild”. The irreducible representations of tame algebras consist of a finite
set of discrete representations and a finite number of families of representations with
one parameter;3 wild algebras have an infinite number of irreducible representations
that cannot be subdivided into one-parameter families. For example, Table 7.1 in [24]
presents the 8 distinct irreducible representations of GL2(R) × GL2(R) × GL2(R).
A classical example of a tame algebra admitting a finite number of one-parameter
families is the Kronecker–Weierstrass–Ja’Ja’ normal form of matrix pencils [27, 34],
which describes the irreducible representations of matrix pencils under a simultaneous
equivalence transformation; see, e.g., [12]. An important class of wild algebras is
GLn1 × · · ·×GLnd

for d ≥ 5 and ni ≥ 2 [42]; i.e., all tensor spaces of order higher than
5. A consequence of Drozd’s theorem is that classifying the irreducible representations
of wild algebras entails the classification of all other algebras: classifying one wild
algebra is as difficult as obtaining the irreducible representations of all algebras [48,
§XIX.1]. This is considered to be infeasible by representation theorists. It is thus
likely that other proof strategies4 will have to be pursued to show that approximation
problem (1.2) is ill-posed for orders higher than five.5

While the ill-posedness argument proves, for third-order real tensors, that a set of
nonzero measure wherein no tensor admits an SEY decomposition exists, the general
case is still open. All results discussed above explicitly rely on the existence of a
set of tensors with positive measure that admit a supergeneric rank. This class of
arguments fails for complex tensor spaces, as no such sets of positive volume exist.6

The main contribution of this paper is a proof that in every complex tensor space
there exists a set of positive Lebesgue measure wherein no tensor admits an SEY
decomposition; moreover, it is shown that for tensors of small rank this set is dense.
The main result we set out to prove in this paper is:

Theorem 1.3. Let d ≥ 3. The set of order-d tensors in Cn1×n2×···×nd that
do not admit an SEY decomposition is nonempty and of positive Lebesgue measure.
Compared with Corollary 1.2, our main theorem extends the known results to complex
tensor spaces of arbitrary order.

3A tame algebra can thus admit an infinite number of irreducible representations if its irreducible
representations include at least one one-parameter family.

4We do not claim that an approach based on classifying irreducible representations is doomed to
fail; for instance, classifying the irreducible representations of the elements of the rth order secant
variety is possible for all tensor spaces, provided that r is sufficiently small [39, p. 244]; see, e.g., [13].
It is unclear whether such an approach could be employed to prove that the set of tensors for
which problem (1.2) is ill-posedness for higher-order tensor spaces over an arbitrary field has positive
volume.

5GL2(R) × GL2(R) × GL2(R) × GL2(R) is a tame algebra with an infinite number of irreducible
representations; in principle, the technique from [24] could be applied.

6The validity of this statement can be assessed by replacing the Veronese by the Segre variety in
Corollary 6.11 of [21]; alternatively, see [39, p. 69].
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The outline of this paper is as follows. In the next section, some terminology and
notation is fixed. Then, in section 3, the SEY decomposition is formally proposed.
Both a necessary and a sufficient condition for its existence are investigated. In section
4, the main result is proved. Finally, we present conclusions in section 5.

2. Preliminaries. Throughout this paper, the symbol F denotes either the real
field R or the complex field C. Tensors are typeset in calligraphic upper-case letters
(A, B), matrices in upper-case letters (A), vectors in boldface lower-case letters (a,
u, v) and scalars in lower-case letters (a, σ, λ). The scalar d is reserved for the order
of a tensor. The Euclidean inner product is denoted by 〈·, ·〉, the Euclidean norm by
‖ · ‖, and the tensor product by ⊗. The complex unity will be denoted by ı.

Multilinear algebra. A tensor of order d is an element of the tensor product of d
vector spaces: A ∈ Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd . Defining the standard tensor basis of order
d as {ei1 ⊗ ei2 ⊗ · · · ⊗ eid

}n1,n2,...,nd

i1,i2,...,id=1, where eik
is the ikth standard basis vector of

Fnk , we can represent

A =

n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

ai1,i2,...,id
ei1 ⊗ ei2 ⊗ · · · ⊗ eid

,

with respect to the standard tensor basis as the d-array

[ai1,i2,...,id
]
n1,n2,...,nd

i1,i2,...,id=1 ∈ Fn1×n2×···×nd .

The Euclidean inner product of two tensors A, B ∈ Fn1×···×nd can then be defined as

〈A, B〉 :=

n1∑

i1=1

· · ·
nd∑

id=1

ai1,...,id
bi1,...,id

, (2.1)

with x the complex conjugate of x. The corresponding Euclidean norm is ‖A‖ :=√
〈A, A〉. Note that this definition coincides with the Euclidean norm of A when

considered as an element over Fn1···nd . If

A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(d) and B = b(1) ⊗ b(2) ⊗ · · · ⊗ b(d),

then, the inner product takes a special form:

〈A, B〉 = 〈a(1),b(1)〉 · · · 〈a(d),b(d)〉,

see, e.g., [29, Section 4.5.1]. Two tensors A and B are orthogonal, A ⊥ B, iff 〈A,B〉 =
0. Two simple tensors A and B are thus orthogonal iff there is at least one mode k
wherein the mode-k vectors are orthogonal, a(k) ⊥ b(k).

Algebraic geometry. We say that the tensor A is simple if it can be written as

A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(d), with a(k) ∈ Fnk .

A is of rank r if it can be written as

A =
r∑

i=1

λia
(1)
i ⊗ a

(2)
i ⊗ · · · ⊗ a

(d)
i , with a

(k)
i ∈ Fnk and λi ∈ F, (2.2)

but not with fewer than r terms. This rank will be denoted by rank⊗(A).
It is often useful to consider tensors up to scalar multiplication, i.e., as F-rational

points on the projective space

P = P(Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd).
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Then, the simple tensors correspond precisely to the F-rational points of the Segre
variety

SF
n1,n2,...,nd

= PFn1 × PFn2 × · · · × PFnd ⊂ P.

If F = C, the tensors of border rank at most r are described by points on the
rth secant variety σr

(
SC

n1,n2,...,nd

)
of the Segre variety SC

n1,n2,...,nd
[39]. Recall that

the secant variety of a subvariety S of some projective space PCN is defined as the
Zariski closure of the union of the linear spans of r points on the variety S [39]:

σr(S) :=
∪

p1,...,pr∈S
span (p1, p2, . . . , pr).

A C-rational point A of P is of border rank r if it belongs to σr

(
SC

n1,n2,...,nd

)
, but

not to σr−1

(
SC

n1,n2,...,nd

)
. By construction, the tensors of rank r form a Zariski-dense

constructible subset of the rth secant variety; that is, rank-r tensors are generic within
the set of tensors of border rank r.

For more information about the connection between algebraic geometry and mul-
tilinear algebra, see Landsberg’s book [39].

3. Schmidt-Eckart-Young decomposition. We consider a natural general-
ization of the Schmidt-Eckart-Young theorem to higher-order tensors.

Definition 3.1. An order-d tensor A ∈ Fn1×n2×···×nd admits a Schmidt-Eckart-
Young decomposition iff it can be written as a linear combination of simple tensors:

A =

R∑

i=1

σiAi =

R∑

i=1

σia
(1)
i ⊗ a

(2)
i ⊗ · · · ⊗ a

(d)
i , (3.1)

with R = rank⊗(A), σi ∈ F, a
(k)
i ∈ Fnk and ‖a(k)

i ‖ = 1, and such that truncating the
decomposition is optimal for all r = 1, 2, . . . , R:

r∑

i=1

σiAi ∈ arg min
rank⊗(B)=r

‖A − B‖. (3.2)

Note that there may be multiple optima for any given rank. We say that a point in
PFn1×n2×···×nd has an SEY decomposition if it has a tuple of homogeneous coordinates
in Fn1×n2×···×nd with an SEY decomposition.

The definition imposes no orthogonality constraints, and the σi’s are not sorted by
decreasing magnitude. It will nonetheless be shown in Corollary 3.4 that the singular
value decomposition is the only SEY decomposition for second-order tensors.

3.1. A necessary condition. We begin by establishing a necessary condition
for admitting an SEY decomposition, and claim that they are weak two-orthogonal:

Definition 3.2. A weak two-orthogonal decomposition is an orthogonal decom-
position of an order-d tensor A ∈ Fn1×n2×···×nd in simple tensors:

A =
R∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ . . . ⊗ u

(d)
i , with u

(k)
i ∈ Fnk , ‖u(k)

i ‖ = 1 and σi ∈ F,

and all terms are pairwise orthogonal in at least two modes:

∀ 1 ≤ i < j ≤ R : ∃ 1 ≤ k1 < k2 ≤ d : u
(k1)
i ⊥ u

(k1)
j and u

(k2)
i ⊥ u

(k2)
j . (3.3)
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Theorem 3.3. Let A admit an SEY decomposition as in Definition 3.1, then it
is a weak two-orthogonal decomposition.

Proof. We prove the assertion by contradiction. Assume that an SEY decom-
position is not weak two-orthogonal. Then, there exists a maximal tuple (i∗, j∗) ∈
{1, . . . , R} × {1, . . . , R} with i∗ < j∗ such that Ai∗ and Aj∗ are not two-orthogonal.
The maximality of this tuple should be interpreted with respect to the following com-
plete order

(i1, j1) < (i2, j2) iff (i1 < i2) or ((i1 = i2) and (j1 < j2)).

We distinguish between two cases. Either Ai∗ and Aj∗ are orthogonal in only one
mode, or they are not orthogonal.

Consider first the case in which Ai∗ and Aj∗ are not orthogonal. Let 1 ≤ k ≤ d
be any mode, and consider the following simple tensor

εP(k)
i∗j∗ := a

(1)
i∗ ⊗ · · · ⊗ a

(k−1)
i∗ ⊗ εa

(k)
j∗ ⊗ a

(k+1)
i∗ ⊗ · · · ⊗ a

(d)
i∗ , with ε ∈ R,

which has the property that it only perturbs the kth mode of the i∗th term in the

SEY decomposition of A in the direction of a
(k)
j∗ . That is,

a
(1)
i∗ ⊗ · · · ⊗ a

(d)
i∗ + εP(k)

i∗j∗ = a
(1)
i∗ ⊗ · · · ⊗ a

(k−1)
i∗ ⊗

(
a

(k)
i∗ + εa

(k)
j∗

)
⊗ a

(k+1)
i∗ ⊗ · · · ⊗ a

(d)
i∗ .

Consequently, adding this perturbation to
∑j∗−1

j=1 σjAj does not increase its rank.
Because A admits an SEY decomposition, this perturbed sum does not improve the
approximation error:

∥∥∥∥∥∥
A −

j∗−1∑

j=1

σjAj − εP(k)
i∗j∗

∥∥∥∥∥∥

2

≥

∥∥∥∥∥∥
A −

j∗−1∑

j=1

σjAj

∥∥∥∥∥∥

2

= η2. (3.4)

However, by expanding the norm on the left-hand side and observing that the norm

of εP(k)
i∗j∗ is ε2, we obtain

η2 − 2R

〈
A −

j∗−1∑

j=1

σjAj , εP(k)
i∗j∗

〉
+ ε2 ≥ η2,

which after exploiting linearity and reordering the terms becomes

ε2 ≥ 2R




R∑

j=j∗
σj〈Aj , εP(k)

i∗j∗〉


 = 2R


ε

R∑

j=j∗
σj〈a(k)

j ,a
(k)
j∗ 〉

d∏

m=1
m 6=k

〈a(m)
j ,a

(m)
i∗ 〉


 , (3.5)

where R(α) denotes the real part of α. From the maximality of (i∗, j∗), it follows
that if j > j∗ then Aj is orthogonal, in at least two modes, to Ai∗ . Otherwise, there
would be a j′ > j∗ such that Aj′ is not two-orthogonal to Ai∗ , yielding an immediate

contradiction to the maximality of (i∗, j∗). Consequently,
∏d

m=1,m6=k〈a(m)
j ,a

(m)
i∗ 〉 = 0

if j 6= j∗, because only one mode is excluded from this product, so that Ai∗ is still
orthogonal in at least one other mode to Aj . Therefore, (3.5) reduces to

ε2 ≥ 2ε · R


σj∗

d∏

m=1
m 6=k

〈a(m)
j∗ ,a

(m)
i∗ 〉


 . (3.6)
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If F = C, an additional equation is required to construct our contradiction; to this

end, consider (3.4) again, but now apply the permutation ıεP(k)
i∗j∗ , with ε ∈ R, and

expand the norm to obtain (3.5). However, ε should now be replaced with −ıε on the
right-hand side. Applying the induction hypothesis as before, we obtain finally

ε2 ≥ 2ε · I


σj∗

d∏

m=1
m 6=k

〈a(m)
j∗ ,a

(m)
i∗ 〉


 , (3.7)

where we have used the identity R(−ıα) = I(α), and I(α) denotes the imaginary part
of α. If F = R, (3.7) is not required. If the real part, respectively imaginary part,
on the right-hand side of (3.6), respectively (3.7), is nonzero, a contradiction to the
optimality of the SEY decomposition can be constructed by choosing ε sufficiently
small. Therefore,

σj∗

d∏

m=1
m6=k

〈a(m)
j∗ ,a

(m)
i∗ 〉 = 0.

As σj∗ 6= 0 because that would contradict R = rank⊗(A), there should be at least

one m 6= k such that a
(m)
j∗ ⊥ a

(m)
i∗ .

Consider now the second case; Ai∗ and Aj∗ are orthogonal in one mode, say k.
Repeat the argument for the previous case for mode k, which is now fixed. Then, we
find that this case is also contradictory. Consequently, the assumption of the existence
of such a maximal tuple (i∗, j∗) must be false. This concludes the proof.

As an immediate consequence, we obtain
Corollary 3.4. The singular value decomposition is the unique SEY decompo-

sition of a second order tensor A ∈ Fn1×n2 .
Proof. In the case of two modes, it is clear that Theorem 3.3 reduces to requiring

A = USV T with U ∈ Fn1×R, V ∈ Fn2×R, and S ∈ FR×R. (3.8)

Herein, U and V have orthonormal columns, and S is a diagonal matrix. This is the
compact singular value decomposition.

Weak two-orthogonality is not a sufficient condition, because it does not exclude
the OBT u ⊗ u ⊗ v + u ⊗ v ⊗ u + v ⊗ u ⊗ u with u,v ∈ Fn and u ⊥ v [24].

3.2. A sufficient condition. The Tensor SVD, or completely orthogonal CPD,
[18,35,58] appears in various applications related to blind-source separation [6,14,46].
We show that such a decomposition is a special case of the strong two-orthogonal
decomposition, which is proved to be an SEY decomposition.

Definition 3.5. A rank-R tensor A ∈ Fn1×···×nd admits a strong two-orthogonal
decomposition of rank R with splitting point s ∈ {1, 2, . . . , d} if it can be written as

A =
R∑

i=1

σiu
(1)
i ⊗ · · · ⊗ u

(s)
i︸ ︷︷ ︸

Us
i

⊗ v
(s+1)
i ⊗ · · · ⊗ v

(d)
i︸ ︷︷ ︸

Vs
i

=
R∑

i=1

σiUs
i ⊗ Vs

i , (3.9)

with u
(k)
i ∈ Fnk , v

(k)
i ∈ Fnk , σi ∈ R, ‖u(k)

i ‖ = 1, ‖v(k)
i ‖ = 1, and

∀ 1 ≤ i < j ≤ R : Us
i ⊥ Us

j and Vs
i ⊥ Vs

j .
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The coefficients σi are assumed to be sorted: σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
R > 0.

The fact that the σi are required to be real does not limit generality; the co-
efficients can always be chosen to be the norm of σiUs

i ⊗ Vs
i , which is real. The

partitioning of the nodes is also not restricted to consecutive modes because we may
arbitrarily renumber the modes; however, for simplicity, we assume a partitioning
with consecutive mode numbers in the remainder.

From the above definition, it follows that a strong two-orthogonal decomposition
is a weak two-orthogonal decomposition with an additional restriction on the choice
of k1 and k2 in Definition 3.2; it is, in addition, required that 1 ≤ k1 ≤ s < k2 ≤ d.
This turns out to be sufficient for obtaining optimality.

Theorem 3.6. A rank-R strong two-orthogonal decomposition of a rank-R tensor
is an SEY decomposition.

Proof. A tensor space T := Fn1 ⊗ · · · ⊗ Fns ⊗ Fns+1 ⊗ · · · ⊗ Fnd is isomorphic, as
a vector space, thus ignoring the tensor structure [29], to Ts := Fn1···ns ⊗ Fns+1···nd .
By definition, a simple tensor a(1) ⊗ · · · ⊗ a(s) ⊗ a(s+1) ⊗ · · · ⊗ a(d) ∈ T becomes the
rank-1 matrix

(a(1) ⊗ · · · ⊗ a(s)) ⊗ (a(s+1) ⊗ · · · ⊗ a(d)) ∈ Ts
∼= T,

where the products inside the brackets should now be interpreted as Kronecker prod-
ucts. Using multilinearity, it follows that a tensor A as in Definition 3.5 with splitting
point s admits the decomposition

A =
R∑

i=1

σiUs
i ⊗ Vs

i ,

which upon closer inspection is the singular value decomposition of A considered as
matrix in Ts. Observe that any rank-r CPD over T is a matrix of rank at most r over
Ts. As the singular value decomposition provides an optimal approximation of rank
r for the matrix A ∈ Ts it follows that no rank-r CPD over T can be a strictly better
approximation than the provided strong two-orthogonal decomposition; otherwise, the
optimality of the matrix singular value decomposition would be contradicted. Finally,
considering a limit of a sum of r simple tensors over T cannot improve the singular
value decomposition, because A ∈ Ts, which is an order-2 tensor product for which it
is known that the set of rank-r tensors is closed; hence, limits do not extend the set
over which the optimization is defined.

The Tensor SVD [18,58] is a CPD where orthogonality is imposed in every mode;
hence, it is an SEY decomposition.

It is an open question whether strong two-orthogonality is also necessary.

4. Generic nonexistence. In this section, the prime result is presented, which
states that a set of nonzero Lebesgue measure exists in PCn1×n2×···×nd , d ≥ 3, such
that its elements do not exhibit an SEY decomposition. Note that we restrict ourselves
to the complex case F = C in this section; however, recall from the introduction that
this is the interesting case as no general results are known. The results in this section
apply for d ≥ 3; matrices admit an SEY decomposition as per Corollary 3.4.

Throughout this section, we consider secants of the Segre variety SC
n1,...,nd

embed-

ded in PCn1×n2×···×nd . The set of tensors that admit a rank-r weak two-orthogonal
decomposition, write σ⊥

r , is a subset of the set of tensors of rank at most r, write
σ′

r, which, in turn, is a subset of the tensors of border rank at most r, i.e., the rth
order secant variety σr of the Segre variety SC

n1,...,nd
. Furthermore, a generic tensor

of border rank r also has rank r over C; that is, σ′
r is dense in σr [39].
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Before proceeding with our proof strategy, we relate an interesting alternative
strategy communicated to us by G. Ottaviani. From [19] we know that generic rank-
r tensors in PCn1×n2×···×nd are identifiable, at least if r is sufficiently small. This
entails that the points on the Segre variety SC

n1,...,nd
are uniquely determined, and in

general configuration. However, it is intuitively clear that the necessary condition we
derived in the previous section imposes a certain configuration on the points, hereby
contradicting generality. This immediately entails that an SEY decomposition does
not exist for such generic rank-r tensors. The strategy we follow in this paper can
result in stronger statements, as we are able to use the conditions for nondefectivity
of Segre varieties, rather than the more restricted conditions for identifiability. In
particular, we can demonstrate that a generic tensor in a cubic tensor space Cn×···×n

(d times), with n sufficiently large, does not admit an SEY decomposition; a result that
cannot be derived from the strategy sketched in this paragraph. It is an important
observation worth stressing, however: optimal truncation and identifiability cannot
occur simultaneously in generic rank-r tensors.

As σr is an algebraic variety, the natural setup for comparing the “size” of σr and
σ⊥

r is by comparing their dimensions as algebraic varieties. For nonalgebraic sets, such
as σ⊥

r , the dimension is defined as the dimension of the smallest enclosing algebraic
set, i.e., the closure in the Zariski topology. So, to show that σ⊥

r is substantially
smaller than σr, we would need to show that the dimension of the Zariski closure of
σ⊥

r in PCn1×n2×···×nd is strictly smaller than dim(σr). Unfortunately, it is difficult
to control the dimension of this Zariski closure because σ⊥

r is not an algebraic subset
of PCn1×n2×···×nd due to the complex conjugation that appears in the definition of
the inner product. However, we may still investigate the underlying real algebraic
structure of σ⊥

r by applying a Weil restriction of scalars from C to R; this simply
means that we write each complex coordinate x as x = u+ ıv and consider u and v as
new coordinates over R. Let

∏
C/R denote the Weil restriction functor, then σ⊥

r can

be considered as a Zariski-closed subset of the real algebraic manifold

(
∏

C/R
PCn1×n2×···×nd)(R) ∼= PCn1×n2×···×nd ;

herein, (A)(R) denotes the set of real points of the complex algebraic variety A, and ∼=
denotes the canonical isomorphism. The (complex) variety obtained by applying the
Weil restriction to σ⊥

r is the complexification of a real algebraic variety isomorphic to
the real algebraic structure of σ⊥

r [33]. Considering then the set of real points of this
Weil restriction yields a real algebraic variety over the reals admitting, in addition to
the Zariski topology, the familiar Euclidean topology. We will exploit this underlying
Euclidean structure to prove our main theorem.

We begin by investigating the dimension of σ⊥
r . The precise definition of this

dimension will become clear from the well-defined construction of the auxiliary variety
J in the proof of the next proposition.

Proposition 4.1. We have

dim(σ⊥
r ) ≤ 2r

d∑

`=1

(n` − 1) + 2δ − 2,

with δ = r − 2br/2c.
Proof. We will need an adapted version of the join operation. Let V1, . . . , Vs be

subvarieties of
∏

C/R PCN , for some positive integer N . Applying the Weil restriction

functor to the projection morphism

AN
C \ {(0, . . . , 0)} → PCN ,
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where AN
C denotes the N -dimensional affine space over C, yields a morphism of R-

varieties

π :
∏

C/R
(AN

C \ {(0, . . . , 0)}) →
∏

C/R
PCN

whose source is canonically isomorphic to A2N
R \{(0, . . . , 0)}. We define the affine cone

of Vi as

Ṽi := π−1(Vi) ∪ {(0, . . . , 0)},

for each i in {1, . . . , s}. This is a closed subvariety of A2N
R . Now the Zariski closure

of the image of Ṽ1 ×R . . . ×R Ṽs under the addition morphism

(A2N
R )s → A2N

R : (v1, . . . , vs) 7→ v1 + . . . + vs

is a union of the origin and fibers7 of the projection morphism π. Removing the origin
and taking the image under π, we obtain a closed subvariety of

∏
C/R PCN that we

call the join of V1, . . . , Vs and denote by J(V1, . . . , Vs). The fibers of π are real planes,
so that the dimension of J(V1, . . . , Vs) is at most

dim(V1) + . . . + dim(Vs) + 2(s − 1).

The simple tensors with complex homogeneous coordinates

[
u

(1)
1 + ıv

(1)
1 · · · u

(1)
n1 + ıv

(1)
n1

]T

⊗ · · · ⊗
[
u

(d)
1 + ıv

(d)
1 · · · u

(d)
nd + ıv

(d)
nd

]T

correspond to the real points of the R-variety

V =
∏

C/R
PCn1 ×R . . . ×R

∏

C/R
PCnd .

For all i, j in {1, . . . , d} with i 6= j, the pairs of simple tensors that are orthogonal in
modes i and j correspond to the real points of the subvariety Wij of V ×R V defined
by the equations





∑ni

`=1(u
(i)
` u̇

(i)
` + v

(i)
` v̇

(i)
` ) = 0

∑ni

`=1(u
(i)
` v̇

(i)
` − u̇

(i)
` v

(i)
` ) = 0

and





∑nj

`=1(u
(j)
` u̇

(j)
` + v

(j)
` v̇

(j)
` ) = 0

∑nj

`=1(u
(j)
` v̇

(j)
` − u̇

(j)
` v

(j)
` ) = 0

,

where we used the coordinates u̇ and v̇ for points on the second factor of the product
V ×R V . The variety V ×R V is irreducible of dimension 4(n1 − 1) + . . . + 4(nd − 1)
and we claim that Wij has codimension 4. This is easy, but somewhat tedious, to
check by covering the projective spaces PCnq by their standard affine charts, which
gives rise to an open covering of V ×R V by affine spaces.

We define W as the union of all the varieties Wij with i 6= j inside V ×R V . This
is again a variety of dimension 4(n1 −1)+ . . .+4(nd −1)−4, whose R-rational points
correspond to pairs of simple tensors with complex homogeneous coordinates that are
orthogonal in at least two modes.

7Informally, the fiber in p ∈ Y of a morphism of varieties κ : X → Y is the preimage of the map
in p. Consider π : AN

C → PCN , and let p′ ∈ AN
C and p = π(p′) ∈ PCN , then the fiber in p consists

of all vectors v ∈ AN
C such that p′ and v are linearly dependent. For a precise scheme-theoretic

definition, we refer to [32].
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Set N = n1 · · · nd. Applying the Weil restriction functor to the Segre embedding,
we get a closed immersion of R-varieties

V ×R V →
∏

C/R
PCN ×R

∏

C/R
PCN .

Consider the product of projections

(π, π) : (A2N
R \ {(0, . . . , 0)}) ×R (A2N

R \ {(0, . . . , 0)}) →
∏

C/R
PCN ×R

∏

C/R
PCN .

Similarly to the construction of the join, we consider the Zariski closure of the image
of (π, π)−1(W ) under the addition morphism

A2N
R ×R A2N

R → A2N
R : (v1, v2) 7→ v1 + v2,

remove the origin, and take the image under π. The result of these operations is a
closed subvariety X of

∏
C/R PCN of dimension at most

4(n1 − 1) + . . . + 4(nd − 1) − 2.

By construction, the set of real points (X)(R) corresponds to a subset of PCN that
contains all rank-2 tensors admitting a weak two-orthogonal decomposition.

Now we write r as 2r0 + δ, with r0 a nonnegative integer and δ an element in
{0, 1}. We set

J = J(X, . . . ,X︸ ︷︷ ︸
r0 copies

, V δ) ⊂
∏

C/R
PCN ,

where the notation V δ means that we include the variety V only in the case where
δ = 1. The join variety J has dimension at most

r0dim(X) + δdim(V ) + 2(r0 + δ − 1)

≤ r0(4(n1 − 1) + . . . + 4(nd − 1) − 2) + δ(2(n1 − 1) + . . . + 2(nd − 1)) + 2(r0 + δ − 1)

= 2r
d∑

`=1

(n` − 1) + 2δ − 2,

and the set of real points J (R) corresponds to a subset of PCN that contains the set
σ⊥

r (S) of rank r tensors admitting a weak two-orthogonal decomposition.
The established upper bound may be coarse, because the construction of X and

J in the above proof only takes the weak two-orthogonality into account for the suc-
cessive rank-1 terms 2k and 2k+1, for all k, in a weak two-orthogonal decomposition.
Nevertheless, this bound is sufficient for proving the main theorem.

With the understanding of the dimension of σ⊥
r in place, we can now understand

Lemma 4.2. If

dim(σ⊥
r ) < dim(

∏

C/R
σr) = 2 dim(σr),

then the set of rank-r tensors not admitting a rank-r weak two-orthogonal decomposi-
tion, and, consequently, not admitting an SEY decomposition, i.e.,

(
∏

C/R
σr \ σ⊥

r )(R),
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is a Zariski-open subset, and, hence, dense open subset in the Euclidean topology, of

(
∏

C/R
σr)(R) ∼= (σr)(C).

If the above lemma applies, we will say that a generic rank-r tensor has no SEY
decomposition. Beware that the term “generic” refers to the algebraic structure on the
real variety

∏
C/R σr; this does not necessarily imply the existence of a Zariski-dense

open subset of the complex variety σr whose points do not have an SEY decomposition.
To apply Lemma 4.2, we still need a lower bound on the dimension of σr. The

dimensions of this variety have been studied for over a century now, but, unfortunately,
they still elude the scientific community. The expected dimension of σr is well-known:

dimE σr

(
SC

n1,n2,...,nd

)
= min

{
N − 1, (r − 1) + r

d∑

`=1

(n` − 1)

}
,

but in some instances dim σr

(
SC

n1,n2,...,nd

)
may be strictly smaller than the expected

dimension; then, σr is called a defective rth order secant variety, and SC
n1,n2,...,nd

a
defective Segre variety. Only a limited number of defective secant varieties of Segre
varieties are known, see, e.g., [1, §6.1] and [39, §5.5], while several secant varieties
have been proven to be nondefective [1, 16,17,40,54].8 It is important to note that

dim σ⊥
r ≤ 2r

d∑

`=1

(n` − 1) < 2 dimE σr,

whenever d ≥ 3 and r ≥ 2. That is, whenever the rth order secant variety σr of a
d-factor Segre variety is nondefective, a generic element of σr cannot admit a weak
two-orthogonal decomposition of rank r. Remark, further, that the discrepancy in
dimension is 2(r − 1), which provides ample leeway in the defectivity of σr before the
approach outlined in this paper becomes moot. Combining the above observations
with Lemma 4.2, and using the known results from the literature, we obtain:9

Corollary 4.3. Assume without loss of generality that 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd

with d ≥ 3. Then, a generic rank-r tensor in PCn1×n2×···×nd does not admit an SEY
decomposition if:

2 ≤ r ≤ max

{
2,

⌊
nd

1

dn1 − d + 1

⌋
− n1 + 1,min

{
nd,

d−1∏

`=1

n` −
d−1∑

`=1

(n` − 1)

}}
.

Proof. From [1, Thm. 5.2] we know that σr

(
SC

n1,...,n1

)
is nondefective whenever

r is smaller than the first item in the maximization. Then, using [1, Prop. 3.11],
it follows that σr

(
SC

n1,...,nd

)
is nondefective because ni ≥ n1. Applying Lemma 4.2

concludes this case. The second item in the maximization follows from combining
Theorems 4.3 and 4.4 from [1], which summarize [16], with Lemma 4.2.

8It should be noted that a defective rth order secant variety also implies that all secants of order
r′ > r are defective, unless σr′ fills the ambient space PCn1×n2×···×nd , so finding defective secant
varieties should be an easy task; yet both theoretical and probabilistic [57] results show that few
varieties are defective.

9Keep in mind that “generic” should be interpreted with respect to the underlying real topology
of σr.
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Corollary 4.3 provides an easy-to-check condition on the rank r for which we know
that admittance of an SEY decomposition is impossible for generic rank-r tensors in
the tensor space of the stated dimensions. From the formula it is clear that for
sufficiently small r, an SEY decomposition cannot be admitted by a generic rank-r
tensor. This condition is by no means necessary; it is a weak sufficient condition.

The upper bound on the rank in Corollary 4.3 can often be improved by observing
that the dimension of σ⊥

r is substantially smaller than σr, and that this discrepancy
increases proportionally to r. We will illustrate this with one well-studied case, the
cubic tensor spaces PCn×n×···×n. Here, it can even be shown that a generic ten-
sor in this space (with respect to the Euclidean topology) does not admit an SEY
decomposition:

Theorem 4.4. Let d ≥ 3 and n ≥ 2. Then, a generic tensor in PCn×n×···×n (d
times) does not admit an SEY decomposition whenever

d ≥ 6 or





n ≥ 4 if d = 3

n ≥ 15 if d = 4

n ≥ 5 if d = 5

.

Proof. Let S = SC
n,n,...,n, and let r denote the smallest r such that σr =

PCn×n×···×n; this is called the generic rank [39]. A generic rank-r tensor is called a
generic tensor. We additionally recall the definition of the expected generic rank for
cubic tensor spaces:

rE =

⌈
nd

dn − d + 1

⌉
≤ r;

the generic rank equals the expected generic rank whenever the Segre variety S has
no defective secant varieties. We define also the cumulative secant defect

δr :=
r∑

i=2

(dim σi−1 + dim S + 1 − dim σi);

note that this quantity can only increase with r. Then, one verifies that

dim σr = r

d∑

`=1

(n` − 1) + (r − 1) − δr + 1.

It follows that Lemma 4.2 may be invoked whenever the middle inequality in

1

2
dim σ⊥

r ≤ r

d∑

`=1

(n` − 1) + δ − 1 < dimσr = r

d∑

`=1

(n` − 1) + (r − 1) − δr + 1

holds; note that this is not a necessary condition, however, because the upper bound
in Property 4.1 is likely to be coarse. The middle inequality is then equivalent with

−δ + 1 + (r − 1) > δr − 1 which is satisfied if r > δr + δ − 1.

Recalling that δ ∈ {0, 1}, we find that r > δr implies the latter equation regardless of
δ, and is thus a sufficient condition for dim σ⊥

r < 2 dim σr. The foregoing discussion
is only valid when r is small enough so that σ⊥

r does not fill the ambient space, but
this will not arise in the remainder.
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If d = 3, Lickteig’s classic result [40, p. 97] on the nondefectivity of S, n 6= 3, can
be used. It states that all secant varieties of S are nondefective, and thus r = rE .
Therefore, δr = 0 for r < rE , and δrE

< 3n − 3. Thus if the last inequality in

rE =

⌈
n3

3n − 2

⌉
≥ n3

3n − 2
> 3n − 3

is satisfied, then dimσ⊥
r < 2 dim σr so that Lemma 4.2 applies. It is straightforward to

verify using a computer algebra system that the last inequality in the above is satisfied
whenever n ≥ 7. The remaining cases can be verified by substituting n = 4, 5, 6 in
the more refined inequality rE > n3 mod (3n − 2).

If d ≥ 4, we know that δr = 0 for r ≤ nd

dn−d+1 − n from [1, Theorem 5.2]. From
the same theorem, it can be deduced that there are at most n defective secants of S
before the space is filled. Consequently, the maximum cumulative secant defect in the
generic rank is n(dn−d+1). If we compare this with the last rank for which we know
that the cumulative defect is zero, then r > δr for all r in said range. Therefore, if

nd

dn − d + 1
− n > n(dn − d + 1),

it follows that dim σ⊥
r < 2 dim σr, and Lemma 4.2 applies. Using a computer algebra

system it is easy to verify the cases d = 4, 5. For d = 6, 7, one would find that n ≥ 3,
which can be improved by Catalisano, Geramita, and Gimigliano’s recent result on
the nondefectivity of n = 2 if d ≥ 5 [17]. Finally, if d = 8, one immediately obtains
n ≥ 2, providing the base case for the following inductive proof. Assume that

nk > (kn − k + 1)(n(kn − k + 1) + n),

for all n ≥ 2, for some k ≥ 8. Consider then the fraction

α(k, n) =
((k + 1)n − (k + 1) + 1)(n((k + 1)n − (k + 1) + 1) + n)

(kn − k + 1)(n(kn − k + 1) + n)

=

(
k + 1

k

)2

− k − 1

k2(kn − k + 1)
− 2(2 + k)

k2(kn − k + 2)
.

It is easy to verify that α(k, n) < (9/8)2 < 2 for n ≥ 2 and k ≥ 8. Clearly, if
α(k, n) < 2, we have

nk+1 > α(k, n)nk > α(k, n)(kn − k + 1)(n(kn − k + 1) + n)

= ((k + 1)n − (k + 1) + 1)(n((k + 1)n − (k + 1) + 1) + n),

proving the inductive case. This concludes the proof.
Finally, we prove the main result, already presented in the introduction as Theo-

rem 1.3. It states that in every complex tensor space of order at least three, one can
always find a set of positive Lebesgue measure wherein its elements do not admit an
SEY decomposition. The previous theorem actually specializes the main theorem for
cubic tensor spaces, proving that the set is then dense.

Theorem 4.5. Let d ≥ 3. Then there exists a non-empty open subset V of
Cn1···nd ∼= Cn1 ⊗ · · · ⊗ Cnd with respect to the Euclidean topology such that the points
in V do not admit an SEY decomposition; V has positive Lebesgue measure.

Proof. Set N = n1 · · · nd. It is known that σ2

(
SC

n1,n2,...,nd

)
is never defective for

d ≥ 3 [1, p. 781]. Let A0 be a rank-2 tensor in CN that does not lie in the affine cone
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over σ⊥
2 ⊂ PCN . Since σ⊥

2 is closed in PCN with respect to the Euclidean topology,
there exists a real value ε > 0 such that the open `2-ball around A0 in CN with radius
ε is disjoint from the cone over σ⊥

2 .10 Now let V be the open `2-ball around A0 in
CN with radius ε/2. Then for every point A in CN , any best rank-2 approximation
A∗ of A satisfies

‖A − A∗‖ ≤ ‖A − A0‖ <
ε

2
so that ‖A∗ − A0‖ < ε,

and, hence, A∗ does not lie in the affine cone over σ⊥
2 . This means that A∗ does

not admit an SEY decomposition. Alternatively, if A does not have a best rank-
2 approximation, we again find that it does not admit an SEY decomposition. In
both cases, A does not admit a best rank-2 approximation that itself admits an SEY
decomposition. However, from the definition it follows that a tensor A can only admit
an SEY decomposition if for every rank there exists a best approximation of that rank
that itself admits an SEY decomposition; this concludes the proof.

Note that in the proof we may substitute σ⊥
2 for any secant variety that would

satisfy Lemma 4.2, but such an exercise would only be useful if this would somehow
provide information about the value of ε, and possibly increase it.

5. Conclusions. We argued that current approaches for investigating the ex-
istence of an SEY decomposition rely explicitly on the existence of a set of tensors
admitting supergeneric ranks with positive measure. Such an approach fails in a
complex setting, leading us to propose an alternative strategy based on algebraic ge-
ometry and a comparison of dimensions of the varieties involved. We showed for every
complex tensor space that an SEY decomposition is not admitted at least by a set of
positive Lebesgue measure. Notwithstanding these results, we also provided a non-
trivial class of tensors, i.e., those admitting a strong two-orthogonal decomposition,
which are optimally truncatable.
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