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Abstract. The Quadratic Arnoldi algorithm is an Arnoldi algorithm for the solution of the
quadratic eigenvalue problem, that exploits the structure of the Krylov vectors. This allows us to
reduce the memory requirements by about a half. The method is an alternative to the Second Order
Arnoldi method (SOAR). In the SOAR method it is not clear how to perform an implicit restart.
We discuss various choices of linearizations in L1 and DL. We also explain how to compute a partial
Schur form of the underlying linearization with respect to the structure of the Schur vectors. We
also formulate some open problems.

1. Introduction. The goal is to solve the quadratic eigenvalue problem

Q(λ)u = 0 with Q(λ) = K + λC + λ2M . (1.1)

The matrices K, −iC, and −M are the stiffness, damping, and mass matrices respec-
tively and arise from the Fourier transformation of the spatial discretization by finite
elements of the mechanical equation. They are large n×n matrices and usually sparse.
Equation (1.1) is solved when the engineer is interested in the eigenfrequencies (reso-
nance frequencies) and damping properties of the mode shapes (i.e. the eigenvectors).
Krylov methods for the solution of quadratic eigenvalue problems have been studied
by Parlett and Chen [19], Saad [20], Mehrmann and Watkins [17]. The quadratic
eigenvalue problem and solution methods are reviewed by Tisseur and Meerbergen
[23].

Standard methods cannot be used directly to efficiently solve (1.1) because of the
quadratic term in λ. Instead, (1.1) can be ‘linearized’ into a problem of the form

(A− λB)

(

λu
u

)

= 0 . (1.2)

Since we are interested in the eigenvalues near zero, we usually solve the inverted
problem

S

(

u
θu

)

= θ

(

u
θu

)

(1.3)

with S = A−1B and θ = λ−1. There are three disadvantages with the Arnoldi
method : firstly, the doubling of the size of the problem increases the memory cost by
a factor two ; secondly, the typical structure of the eigenvectors of the linearization is
lost ; and finally, the Ritz values are computed from a small Hessenberg matrix and
not from a small quadratic eigenvalue problem.

All these disadvantages can be solved by the SOAR method [3]. However, the
SOAR method is not the preferred method for computing a Schur form of the lineariza-
tion. As a consequence, classsical implicit restarting [21] [18] is no longer possible.
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In this document, we propose a method that is close to SOAR. We exploit the
structure of the linear problem to divide the storage cost of the Arnoldi method
roughly by a factor two ; we propose a locking procedure of converged Schur vectors
that do keep the structure of the exact Schur vectors.

Both the SOAR method [3] and the Q-Arnoldi method compute the same sub-
space of the linearized problem. Q-Arnoldi performs a projection that does not pro-
duce a quadratic eigenvalue problem : the Ritz pairs are computed from the Arnoldi
recurrence relation, which allows for the computation of a Schur form. Exploiting the
Schur form of the linearization in the SOAR method for restarting purposing is not
trivial and is, to date, an open question. See [14] for exploiting the Schur form in
the inverse residual iteration and Jacobi-Davidson methods. The problem is that the
Schur vectors, computed by the SOAR method, cannot, in general, be mapped in a
Krylov recurrence relation.

Nevertheless, some results in this paper also have consequences to the SOAR
method. We devote some time on the choice of linearization in L1 and DL [12], which
is also useful for the SOAR method.

Note that B−1A can be used as an alternative to A−1B. In applications this is
usually less effective than using A−1B when the eigenvalues near zero are wanted.
Many applications are not extremely large, i.e. smaller than 100,000 degrees of free-
dom, which allows the use of a direct linear system solver for applying A−1.

The fact that the Krylov vectors have length 2n instead of n may limit their
practical use, especially when the Arnoldi method [1, 11, 2] is used when a large
number of vectors need to be stored : k iterations of the Arnoldi method require
the storage of the order of (2k + 2)n floating point numbers (real or complex). The
Q-Arnoldi scheme exploits the structure of S to reduce the memory requirements to
(k + 2)n floating point numbers. Similar tricks can be used for reducing the storage
cost for partial reorthogonalization in the Lanczos method. Although the Lanczos
method [8, 9] can be used to keep the storage requirements low, the Arnoldi method
is usually preferred for eigenvalue computations. This memory reduction trick is also
used in the SOAR trick.

The eigenvectors of (1.1) appear twice in the eigenvectors of (1.2). When the
linearized problems are solved in a Krylov subspace, however, the two computed
solutions are, in general, different. Therefore, we address which one of the two should
be returned as an approximate solution vector of (1.1).

The applications we have in mind to solve arise from vibration problems. Such
problems often have eigenvalues spread out along the imaginary axis, usually with the
real parts on one side of the imaginary axis and often relatively small compared to the
imaginary part. Since, usually, the eigenvalues with small imaginary part are desired,
we use the shift-and-invert transformation with a pole near zero. This transformation
has a cluster of eigenvalues near zero and a few out-liers, that may have large modulus,
which has consequences to the use of the Q-Arnoldi algorithm. This will be discussed
in the paper.

The paper is organized as follows. In §2, we introduce linearizations for (1.1). In
§3, we review the Arnoldi method for (1.2) and present a modification of Arnoldi’s
method that saves memory. We call this the Q-Arnoldi algorithm, where Q stands
for ‘quadratic’. We discuss various issues including the choice of linearization, some
thoughts on computations in finite precision arithmetic, and the choice of component
of the Ritz vectors. Section 4 shows how to exploit the structure of (1.2) in the
computation of Schur vectors. In §5 we show a numerical example from applications.
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We conclude with some remarks in §6.
Throughout the paper, we use x∗ to denote the Hermitian transpose, x∗y for the

inner product of two vectors and ‖x‖ =
√

x∗x for the induced two-norm. We also use
‖ · ‖ to denote the two-norm of a matrix. The matrix Frobenius norm is denoted by
‖ · ‖F .

2. Linearization via the first companion form. By linearization, we mean
the transformation of (1.1) into (1.2) by a suitable choice of A, and B so that there is
a one-to-one correspondance between eigenpairs of (1.1) and the A − λB pencil [22]
[13] [12]. The linearization should be chosen so that the application of S = A−1B is
efficient and accurate. We therefore assume that A and so K are invertible.

Various choices of linearization can be used. Since K has no factor λ in (1.1),
this suggests that K should appear in A. A straightforward choice is

A =

[

D
K

]

, B =

[

D
−M −C

]

, y =

(

λx
x

)

(2.1)

where D can be any nonsingular matrix. It is easy to see that

S = A−1B =

[

I
−K−1M −K−1C

]

(2.2)

from which D disappears.
Lemma 2.1. The pencil A−λB with (2.1) is a linearization iff D is non-singular.
Proof. If D is non-singular, A− λB is a linearization. If D were singular, λ = 0

is an eigenvalue of A−λB, but not of (1.1). Also, λ = ∞ is an eigenvalue even if it is
not an eigenvalue of (1.1). In addition, it is no longer guaranteed that all eigenvectors
have the form (1.2), so A− λB is not a linearization.

An alternative to (2.1) is the first companion form

B =

[

−M
D

]

, A =

[

C K
D

]

, y =

(

λx
x

)

(2.3)

which also produces (2.2).
The matrix used by [17] for the skew-Hamiltonian Hamiltonian eigenvalue prob-

lem does not have the form (2.2).
The linearization can be chosen so that A and B respect special structure of K,

C and M . For example, if all matrices are symmetric and M is nonsingular, one could
use D = −M . Although A−1B is independent of D, it may help building the Krylov
subspace more efficiently. We discuss this in more detail in §3.2.

3. The Arnoldi method. Let N = 2n. The Arnoldi method applied to S ∈
C

N×N and b ∈ C
N produces the Krylov subspace

Kk(S, b) = span{b, Sb, S2b, . . . , Sk−1b} .

It computes the N × k matrix Vk = [v1, . . . ,vk ] of iteration vectors, the upper
Hessenberg matrix Hk and the residual term vk+1βk so that

SVk −VkHk = vk+1βke∗k , (3.1)

SVk −Vk+1Hk = 0 ,

where V∗
k+1Vk+1 = I . Equation (3.1) is called the Arnoldi recurrence relation. An

algorithm for computing Vk and Hk is now given.
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Algorithm 3.1 (Arnoldi method).
1. Set the initial vector v1 so that ‖v1‖2 = 1.
2. For j = 1, . . . , k do

2.1. Compute v̂j = Svj .
2.2. Compute the Arnoldi coefficients hj = V∗

j v̂j .
2.3. Update ṽj = v̂j −Vjhj .
2.4. Get the scalar βj = ‖ṽj‖2 and compute vj+1 = ṽj/βj .
End for

Steps 2.2–2.4 orthonormalize Svj against v1, . . . ,vj into vj+1. The coefficients hj

form the jth column of Hj and βj is the j + 1, j element of Hk. Roughly speaking, k
iterations cost about 2N(k + 3)k flops, excluding the cost for Step 2.1, where 1 flop
is the cost for an addition or a multiplication.

3.1. The Q-Arnoldi algorithm. We now discuss how we can make Algo-
rithm 3.1 more efficient for S from (2.2). We decompose the jth Arnoldi vectors
into

vj =

(

vj

wj

)

,

with vj , wj ∈ Cn. The Arnoldi recurrence relation (3.1) for the linearization (2.1) can
now be written as

[

I
−K−1M −K−1C

](

Vk

Wk

)

−
(

Vk

Wk

)

Hk = βk

(

vk+1

wk+1

)

e∗k (3.2)

from which we deduce that

Wk = Vk+1Hk . (3.3)

This implies that we only have to store the vectors Vk, vk+1 and wk+1 to evaluate
the recurrence relation, which are (2 + k)n floating point numbers. It results in an
important reduction of the memory cost compared to Algorithm 3.1. The following
algorithm implements this idea.

Algorithm 3.2 (Q-Arnoldi).
1. Let v1 and w1 be chosen so that ‖v1‖22 + ‖w1‖22 = 1.
2. For j = 1, . . . , k do

2.1. Compute ŵj = −K−1(Mvj + Cwj) and v̂j = wj .
2.2. Compute the Arnoldi coefficients

hj =

[

V ∗
j−1v̂j + H∗

j−1(V
∗

j ŵj)
v∗j v̂j + w∗j ŵj

]

.

2.3. Update

ṽj = v̂j − Vjhj ,

w̃j = ŵj − [Vj wj ]

([

Hj−1 0
0 1

]

hj

)

.

2.4. Normalize vj+1 = ṽj/βj and wj+1 = w̃j/βj with βj = (‖ṽj‖2 + ‖w̃j‖2)1/2.
2.5. Set the jth column of Hj as [hT

j βj ]
T .

End for
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The difference with Algorithm 3.1 is only in Steps 2.2–2.3, where Wj−1 is replaced
by VjHj−1. The cost for computing H∗

j−1(V
∗
j ŵj) in Step 2.2 is 2(nj + j(j − 1))

flops, so that the total cost for Step 2.2 is 2(2nj + n + j(j − 1)) flops. The cost
for computing w̃j in Step 2.3 is 2((j − 1)j + n(j + 1)) and the computation of ṽj

requires 2nj flops. Step 2.4 costs 8n flops as for Algorithm 3.1. The total cost for
Steps 2.2–2.4 is 8nj + 12n + 4j(j − 1). For k iterations the cost is of the order of
4nk2 + 16nk + 4

3 (k − 1)k(k + 1) flops. Algorithm 3.1 requires 4n(k + 1)k flops. So,
when k is significantly smaller than n (which is usually the case, otherwise the Arnoldi
method is not suitable anyway), Steps 2.2–2.4 of Algorithms 3.1 and 3.2 have a cost
of approximately 4nk2. Note that only v1, . . . , vj+1 and wj+1 need to be stored on
iteration j so that the memory requirements for the storage of the Arnoldi vectors
for k iterations is limited to n(k + 2) with the Q-Arnoldi method. The storage for
the Arnoldi method is of the order of 2n(k + 1). Although Q-Arnoldi is slightly
more expensive in computation time, the extra cost is usually small compared to the
computation of A−1Bvj .

3.2. Other linearizations. In this section, we study the use of other lineariza-
tions than the companion form in (2.3). Consider the vectorspace of linearizations
[13] of the form

L1(Q) =

{

A− λB : (A− λB)

(

λ
1

)

=

(

η1Q(λ)
η2Q(λ)

)

, η1,2 ∈ C

}

(3.4)

From (3.4), we have

A =

[

A11 η1K
A21 η2K

]

and B =

[

−η1M A11 − η1C
−η2M A21 − η2C

]

,

where A11, A21, η1 and η2 can be freely chosen.
Theorem 3.1. Let A and B be defined following (3.4) and let K be invertible.

Then A − λB is a linearization of (1.1) iff A is invertible. In addition, (2.2) holds
and applying the Arnoldi method to A−1B produces Arnoldi vectors with the structure
(3.3).

Proof. Let

S = A−1B =

[

S11 S12

S21 S22

]

.

From B = AS, i.e.
[

−η1M A11 − η1C
−η2M A21 − η2C

]

=

[

A11 η1K
A21 η2K

][

S11 S12

S21 S22

]

it is easy to verify (2.2).
Formally, A does not need to be invertible for AS = B to be true. If both

η1 = η2 = 0, then det(A − λB) = 0 for all λ’s, so A − λB is not a linearization.
Suppose η1 6= 0. If we multiply the first block of A and B by η2 and the second block
row by η1, we find the pencil Ã−B̃ with the same eigenvalues and eigenvectors, where

Ã =

[

A11 η1K
η2A11 − η1A21 0

]

B̃ =

[

−η1M A11 − η1C
0 η2A11 − η1A21

]

.

Since K is nonsingular, A can only be singular when

η2A11 − η1A21



6 KARL MEERBERGEN

is singular. Following Lemma 2.1, the pencil Ã− B̃ can only be a linearization when
η2A11 − η1A21 is non-singular. In other words, A should be invertible for A − λB
being a linearization of (1.1).

Since A−1B is the same matrix for all linearizations of this form, the Arnoldi
method produces the same recurrence relation, which finishes the proof.

One example that fits in this framework is the solution of palindromic eigenvalue
problems [12]. Let K = MT and C = CT , then (1.1) is called T-palindromic. If (λ, x)
is an eigenpair to (1.1) and the associated left eigenvector is y so that y∗Q(λ) = 0,
then λ−1 also is an eigenvalue with (right) eigenvector ȳ and left eigenvector x̄. In
[12], methods are advocated that produce eigenvalue approximates that respect this
spectral structure. They therefore introduce the linearization with B = −AT in (3.4)
of the form

A =

[

K K
C −M K

]

and B =

[

−M K − C
−M −M

]

.

This corresponds to η1 = η2 = 1, A11 = K and A21 = C −M . A is invertible when
K and C − M − K are invertible, i.e. 0 and −1 are no eigenvalues of (1.1). The
linearized pencil A + λ(−B) is T-palindromic, since (−B) = AT . Using A−1B in the
Arnoldi method, requires the inverse of K and C −M −K = C −K−KT . However,
note that the Ritz values from Arnoldi’s method do not necessarily come in pairs of
the form λ, λ−1.

The generalization of the second companion form is given by

L2(Q) = {A− λB : (λI I)(A− λB) = (η̃1Q(λ) η̃2Q(λ)), η̃1,2 ∈ C} .

Similarly to L1, we can show that A and B take the form

A =

[

A11 A12

η̃1K η̃2K

]

with B =

[

−η̃1M −η̃2M
A11 − η̃1C A12 − η̃2C

]

and

BA−1 =

[

0 −MK−1

I −CK−1

]

.

Note that A−1B depends on A11, A12, and η̃1,2.
The intersection of L1 and L2 is denoted by DL(Q) [13]. Its general form is

A =

[

η1C − η2M η1K
η1K η2K

]

and B =

[

−η1M −η2M
−η2M −η2C + η1K

]

The very common cases for symmetric K, C, and M are η1,2 = {0, 1} and η1,2 = {1, 0}.
Note that A is invertible iff

η1η2C − η2
2M − η2

1K

is invertible, i.e. −η2/η1 is not an eigenvalue of (1.1). Although working with pencils
in DL does not look very important for the Arnoldi method, it might be of interest
when using the Lanczos method, see [19] [24]. The pseudo Lanczos method [19] is the
Lanczos method applied to A−1B using the B pseudo-inner product, i.e. the Lanczos
vectors are orthogonal with respect to B, where A and B are chosen in DL. Using
the B inner product xT By rather than the Euclidean inner product x∗y produces a
tridiagonal Hk.
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3.3. Applying a shift.

3.3.1. Shifting the quadratic equation. The convergence of eigenvalues near
σ can be improved [20, 2] by shifting the eigenvalue problem (1.1) into

(K̃ + (λ − σ)C̃ + (λ− σ)2M̃)u = 0 , (3.5)

with

K̃ = K + σC + σ2M , C̃ = C + 2σM , M̃ = M .

Without loss of generality we can thus assume that σ = 0, by replacing K, C, and M
by K̃, C̃ , and M̃ respectively, and λ− σ by λ.

3.3.2. Shifting the linearization. We can also shift (2.1) into

(A− σB)−1(A− λB)y(λ) = 0 ,

The recurrence relation for (A− σB)−1B becomes

[

A11 + ση1M η1K − σA11 + ση1C
A21 + ση2M η2K − σA21 + ση2C

]−1 [ −η1M A11 − η1C
−η2M A21 − η2C

](

Vk

Wk

)

=

(

Vk+1

Wk+1

)

Hk .

With Ãj1 = Aj1 + σηjM this becomes

[

Ã11 η1K̃ − σÃ11

Ã21 η2K̃ − σÃ21

]−1 [ −η1M Ã11 − η1C̃ + η1σM

−η2M Ã21 − η2C̃ + η2σM

](

Vk

Wk

)

=

(

Vk+1

Wk+1

)

Hk .

The pencil (A−σB)−µB does not lie in L1(Q(λ−σ)). However, when we introduce
Zk+1 = Vk+1 − σWk+1, then we have

[

Ã11 η1K̃

Ã21 η2K̃

]−1 [ −η1M Ã11 − η1C̃

−η2M Ã21 − η2C̃

](

Zk

Wk

)

=

(

Zk+1

Wk+1

)

Hk ,

which is exactly the same as (3.2) with Vk+1 = Zk+1, where K̃, C̃ and M are related
to the shifted problem (3.5). We compute Wk = Zk+1Hk and Vk = Zk+1 + σWk .

3.4. Numerical stability. A few words about numerical stability are in order.
In this section, we perform a traditional rounding error analysis on the Algorithms 3.1
and 3.2.

The fact that we compute Wk from (3.3) changes the Arnoldi method in finite
precision arithmetic. In this section, we show that, under certain conditions, the
Q-Arnoldi method is as backward stable for the recurrence relation as the Arnoldi
method. More specifically, we shall give bounds to

τR = ‖Wk − Vk+1Hk‖F (3.6)
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where Vk+1 and Hk are computed by either the Arnoldi method or the Q-Arnoldi
method.

The reader is referred to Higham [7] for more details on computations with finite
precision arithmetic. We denote by u the machine precision. We introduce the symbol
. to denote

α . β ⇔ α ≤ cβ +O(u)

where c is a u independent constant. We also bound ‖|X | · |Y |‖F ≤ ‖X‖F · ‖Y ‖F .
We define the error matrices Fj and Gj on the recurrence relation (3.1):

V̂j − Vj+1Hj = Fj , (3.7a)

Ŵj −Wj+1Hj = Gj . (3.7b)

3.5. Analysis for the Arnoldi algorithm. We first show two lemma’s that
will help us to make a statement on the backward stability of the Arnoldi method.

Lemma 3.2. For all j = 1, . . . , k we have and

‖vj+1βj − ṽj‖ . u‖ṽj‖ . u‖vj+1‖βj , (3.8a)

‖wj+1βj − w̃j‖ . u‖w̃j‖ . u‖wj+1‖βj , (3.8b)
∥

∥

∥

∥

(

vj+1

wj+1

)

βj −
(

ṽj

w̃j

)∥

∥

∥

∥

. u

∥

∥

∥

∥

(

ṽj

w̃j

)∥

∥

∥

∥

. uβj . (3.8c)

We also have

‖Vj‖2F + ‖Wj‖2F = j +O(u) . (3.9)

Proof. The proofs of (3.8a), (3.8b) and (3.8c) follow from the fact that vj+1 and
wj+1 are computed as vj+1 = ṽj/βj and wj+1 = w̃j/βj . The proof of (3.9) follows
from Theorem 18.12 with m = 1 in [7] for ‖vj‖2 + ‖wj‖2 = 1 +O(u).

Lemma 3.3. In finite precision arithmetic, Algorithm 3.1 produces Vj+1, Wj+1

and Hj so that (3.7) holds with

‖Fj‖F . u‖|Vj+1| · |Hj |‖F . u‖Vj+1‖F ‖Hj‖F , (3.10a)

‖Gj‖F . u‖|Wj+1| · |Hj |‖F . u‖Wj+1‖F ‖Hj‖F , (3.10b)
∥

∥

∥

∥

∥

(

V̂j − Vj+1Hj

Ŵj −Wj+1Hj

)∥

∥

∥

∥

∥

F

. u‖Hj‖F . (3.10c)

In addition, we have
∥

∥

∥

∥

hj −
(

Vj

Wj

)∗(
v̂j

ŵj

)∥

∥

∥

∥

. u

∥

∥

∥

∥

(

v̂j

ŵj

)∥

∥

∥

∥

. (3.11)

Proof. Recall that we can omit constant factors from error bounds using the
notation .. We first prove (3.10a). We define

f̃j = v̂j − Vjhj − ṽj , (3.12)

where ṽj is computed in Step 2.3 of Algorithm 3.1. We have

‖f̃j‖ . u(‖v̂j‖+ ‖|Vj | · |hj |‖) .
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Denote by fj the last column of Fj .

fj = v̂j − Vjhj − vj+1βj = f̃j + (ṽj − vj+1βj) . (3.13)

where vj+1 and βj are computed from Step 2.4. The application of Lemma 3.2 on
Step 2.4 of Algorithm 3.1 readily produces

‖fj‖ . u(‖v̂j‖+ ‖|Vj | · |hj |‖+ ‖vj+1‖βj) . u

∥

∥

∥

∥

|Vj+1| ·
∣

∣

∣

∣

(

hj

βj

)
∣

∣

∣

∣

∥

∥

∥

∥

,

using ‖v̂j‖ . ‖|Vj ||hj |+|vj+1|βj‖. Accumulating fj in Fj = [f1, . . . , fj ] proves (3.10a).
The proofs for (3.10b) and (3.10c) are similar. We use (3.9) to bound (3.10c).

The proof of (3.11) readily follows from standard rounding error analysis.

3.6. Analysis for the Q-Arnoldi algorithm. We define

δj = ‖Vj‖F , (3.14)

γj = ‖[|Vj | · |Hj−1| wj ]‖F , (3.15)

γ̃j+1 = ‖[|Vj | · |Hj−1| wj wj+1]‖F . (3.16)

For the Q-Arnoldi algorithm, Wjz and

(

Vj

Wj

)∗(
v̂j

ŵj

)

are computed as

[VjHj−1 wj ]z and

(

H∗
j−1(V

∗
j ŵj)

w∗j ŵj

)

+ V ∗
j v̂j (3.17)

respectively. The componentwise errors on the computation of (3.17) are of the order

u[|Vj | · |Hj−1| |wj |]|z| and u

∣

∣

∣

∣

(

|Hj−1|∗(|Vj |∗|ŵj |)
|wj |∗|ŵj |

)

+ |Vj |∗|v̂j |
∣

∣

∣

∣

(3.18)

respectively. The normwise error bounds are

uγj‖z‖ and u(γj + δj)

∥

∥

∥

∥

(

v̂j

ŵj

)
∥

∥

∥

∥

(3.19)

respectively.
We extend Lemma 3.3 to the Q-Arnoldi algorithm.
Lemma 3.4. In finite precision arithmetic, Algorithm 3.2 produces Vj+1, Wj+1

and Hj so that (3.7) holds with

‖Fj‖F . uδj+1‖Hj‖F , (3.20a)

‖Gj‖F . uγj+1‖Hj‖F , (3.20b)
∥

∥

∥

∥

∥

(

V̂j − Vj+1Hj

Ŵj −Wj+1Hj

)∥

∥

∥

∥

∥

F

. u
√

γ2
j+1 + δ2

j+1‖Hj‖F . (3.20c)

Proof. Similar to the proof of (3.10a), we find for the componentwise analysis
that

|Fj | = |Wj − Vj+1Hj | . u|Vj+1| · |Hj | ,

which proves (3.20a).
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We now prove (3.20b). We define

g̃j = ŵj − [VjHj−1 wj ]hj − w̃j (3.21)

where w̃j is computed in Step 2.3 of Algorithm 3.2. We have

‖g̃j‖ . u(‖ŵj‖+
∥

∥

[

|Vj | · |Hj−1| |wj |
]

|hj |
∥

∥) .

Let

gj = ŵj −Wjhj − wj+1βj , (3.22)

= g̃j + (w̃j − wj+1βj) + ([VjHj−1 wj ]−Wj)hj , (3.23)

where wj+1 and βj are computed from Step 2.4. Using Lemma 3.2, we find that

‖gj‖ . u(‖ŵj‖+ ‖[|Vj | · |Hj−1| |wj |]|hj |‖+ ‖wj+1‖βj + ‖[|Vj | · |Hj−1| 0]|hj |‖)

. u

∥

∥

∥

∥

[|Vj | · |Hj−1| |wj | |wj+1|]
∣

∣

∣

∣

(

hj

βj

)∣

∣

∣

∣

∥

∥

∥

∥

.

Accumulating gj in Gj = [g1, . . . , gj ] and noting that γ̃j+1 ≤ γj+1 proves (3.20b).
The proof for (3.20c) is similar.

Define

ξj,min =

√

σmin

(

Hj−1

)2
+ 1 (3.24)

ξj,max =

√

σmax

(

Hj−1

)2
+ 1 . (3.25)

Note that ξj,min ≤ 1 ≤ ξj,max. For the vibration problems we have in mind, S usually
has very small eigenvalues, usually leading to ξj,min ≈ 1. The choice of pole σ (see
§3.3) may influence the large singular values of S. By selecting the pole not too close
to an eigenvalue (which is common practice when several eigenvalues are wanted [6]
[15]), ξj,max is not very large.

Theorem 3.5. In exact arithmetic,

√

γ2
j + δ2

j =

∥

∥

∥

∥

(

Vj−1

|Vj | · |Hj−1|

)∥

∥

∥

∥

2

≤ ξj,max

ξj,min
.

Proof. First,

σmin

((

Ij−1

Hj−1

))

= λ
1/2
min(I + H∗

j−1Hj−1) =

√

σmin

(

Hj−1

)2
+ 1 = ξj,min .

Similarly,

σmax

((

Ij−1

Hj−1

))

= ξj,max .

From
(

Vj−1

VjHj−1

)

=

[

Vj 0
0 Vj

](

Ij−1

Hj−1

)
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and
∥

∥

∥

∥

(

Vj−1

VjHj−1

)
∥

∥

∥

∥

2

= 1 ,

we have that

ξ−1
j,max ≤ ‖Vj‖2 ≤ ξ−1

j,min .

The proof follows from

∥

∥

∥

∥

[

Vj 0
0 Vj

](

Ij−1

Hj−1

)∥

∥

∥

∥

≤ ξ−1
j,minξj,max .

The conclusion from this section, is that a loss of precision is possible in the
computation of Hk (see (3.11) and (3.19)) and the recurrence relation in the Q-
Arnoldi process, when ξk,max/ξk,min is large.

4. The solution of the quadratic eigenvalue problem. To simplify, we write
S in the form

S =

[

I
S1 S2

]

.

The solution of the quadratic eigenvalue problem by the shift-invert Arnoldi
method is the objective of this section. For the computation of a number of eigen-
values of a non Hermitian linear problem, we usually compute a partial Schur form.
The idea is that we want the computed Schur vectors to have the structure of the
exact Schur vectors. It turns out that when we force the Schur vectors to satisfy this
structure, we can also keep the structure of the Krylov vectors. In addition, implicit
restarting also keeps the structure of the Krylov vectors.

We first introduce the notion of Q-Arnoldi triple.

4.1. Definition and properties of Q-Arnoldi triples. Definition 4.1.
Q = {Vk+1, Hk, wk+1} is a Q-Arnoldi triple associated with S iff Vk+1 ∈ Cn×(k+1),
wk+1 ∈ Cn, Hk ∈ C(k+1)×k and for

Vk =

(

Vk

Vk+1Hk

)

and Vk+1 =

(

Vk vk+1

Vk+1Hk wk+1

)

(4.1)

1. the Arnoldi recurrence relation (3.1) holds
2. and the Arnoldi vectors are orthogonal:

‖I −V∗
k+1Vk+1‖ = 0 . (4.2)

Definition 4.2. We denote by Qk(S) the set of all Q-Arnoldi triples associated
with S.

4.1.1. Inexact Q-Arnoldi triple. In practice, we may allow a small error on
(3.1) and (4.2) so that

SVk −Vk+1Hk = Fk , (4.3)
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and

∥

∥I −V∗
k+1Vk+1

∥

∥ = γk . (4.4)

where Fk can be considered a backward error on S.
Definition 4.3. The set of inexact Q-Arnoldi triples

Qk(S, η, ρ)

consists of {Vk+1, Hk, wk+1} that satisfy (4.3), (4.4) and (4.1) with ‖Fk‖ ≤ η and
γk ≤ ρ.

4.1.2. Transformations of (inexact) Q-Arnoldi triples. Definition 4.4.

Let Z be a full column rank k + 1× p + 1 matrix of the form Z =

(

Z1 z
0 ζ

)

with Z1

an k × p matrix and k ≥ p. We define the transformation

TZ {Vk+1, Hk, wk+1} = {Vk+1Z, Z†HkZ1, Vk+1Hkz + wk+1ζ} ,

where Z† is the generalized inverse, i.e. Z†Z = I . The following theorem character-
izes the transformation of an (inexact) Q-Arnoldi triple.

Theorem 4.5. Let Q ∈ Qk(S, η, ρ). Let TZ be a transformation as defined by
Definition 4.4. If

ZZ†HkZ1 = HkZ1

then

TZQ ∈ Qp(S, η‖Z1‖, ‖Z‖2ρ + ‖I − Z∗Z‖) .

Proof. Let Q = {Vk+1, Hk, wk+1} ∈ Qk(S, η, ρ). Under the condition of the
Theorem, the elements of TZQk(S) respect the structure (4.1). Multiplication of (4.3)
on the right by Z1 proves that the error on the recurrence relation of the transformed
triple is bounded by ‖Z1‖η. Finally, we have that

I − Z∗V∗
k+1Vk+1Z = Z∗(I −V∗

k+1Vk+1)Z + (I − Z∗Z) ,

which shows the theorem.
When Z is square, Theorem 4.5 always holds. When, in addition to the conditions

of Theorem 4.5, Z∗Z = I , TZQk(S) ⊂ Qp(S).

4.1.3. Modification of the vectors of a Q-Arnoldi triple. Let {Vk+1, Hk, wk+1} ∈
Qk(S). Suppose we modify the second block of the Arnoldi vectors as follows:
W̃k = Wk + vk+1g

∗. Not surprisingly, (4.1), (3.1) and (4.2) are broken. With

Ṽk =

(

Vk

W̃k

)

, we have that the recurrence relation becomes

SṼk − Ṽk+1Hk = Gk :=

(

vk+1g
∗

S2vk+1g
∗ − vk+1g

∗Hk

)

where

‖Gk‖ ≤ (‖S2vk+1‖+ ‖vk+1‖‖Hk‖+ 1)‖g‖ . (4.5)
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The structure of the vectors (4.1) can be restored by modifying H̃k = Hk + ek+1g
∗.

The recurrence relation for the new Hk becomes

SṼk − Ṽk+1H̃k = G̃k :=

(

0
S2vk+1g

∗ − vk+1g
∗Hk − wk+1g

∗

)

. (4.6)

The upper bound (4.5) also holds for G̃k. The orthogonality of Ṽk is restored by
applying TZ−1 to the Q-Arnoldi triple where Z is upper triangular and so that Ṽ∗

kṼk =
Z∗Z, which can be computed by a Cholesky factorization.

Suppose we modify the first block of the Arnoldi vectors as follows: V̂k = Vk +
vk+1g

∗, then (4.1) is restored by modifying Ĥk = Hk − ek+1g
∗Hk. With V̂k =

(

V̂k

Wk

)

, we have that the recurrence relation for the new vectors becomes

SV̂k − V̂k+1Ĥk =

(

0
S1vk+1g

∗ − wk+1g
∗Hk

)

. (4.7)

The orthogonality can be restored in the same way as for Ṽk.

4.2. Computing Ritz vectors and Schur vectors.

4.2.1. Ritz vectors. The Ritz vectors corresponding to Ritz value θ have the

form x =

(

x1

x2

)

=

(

Vkz
Vk+1Hkz

)

where Hkz = θz. When the Ritz value is an eigen-

value, x2 = θx1. As a Ritz vector of (1.1), we can return x2/θ or x1.
In this section, we study which of these is the best choice. Let the residual of the

Ritz pair computed by the Arnoldi method be

(

r1

r2

)

=

[

0 I
S1 S2

](

x1

x2

)

− θ

(

x1

x2

)

=

(

x2 − θx1

S1x1 + S2x2 − θx2

)

. (4.8)

If we use x1 as a Ritz vector for (1.1), the Ritz vector for the linearization is then

x̃ =

(

x1

θx1

)

.

The residual is
[

0 I
S1 S2

](

x1

θx1

)

− θ

(

x1

θx1

)

=

(

0
−(S2 − θI)r1 + r2

)

If we use x2/θ as a Ritz vector for (1.1), the Ritz vector for the linearization is
then

x̂ =

(

θ−1x2

x2

)

.

The residual is
[

0 I
S1 S2

](

θ−1x2

x2

)

− θ

(

θ−1x2

x2

)

=

(

0
θ−1S1r1 + r2

)

The conclusion from this analysis is that for large θ there may be an advantage in
using x2/θ and for small θ in using x1. Note that if x is close enough to an eigenvector,
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then ‖x̃‖ ≈ ‖x̂‖. Alternatively, the norms ‖S1‖ and ‖S2‖ may also play a role in the
decision to make the choice.

Related to the choice of the first or second component is the difference x2−θx1. If
this difference is small, it probably does not make much difference which component
we take.

Theorem 4.6. Let x1 = Vkz and x2 = Wkz with Hkz = θz and ‖z‖ = 1 and
define ρ = βk|e∗kz|.

‖x2 − θx2‖1 ≤ ξ−1
k,minρ

Proof. From (4.8), we have that

‖x2 − θx1‖2 ≤ ‖r1‖2
≤ βk‖vk+1‖2e∗kz .

We conclude that ‖x2 − θx1‖2 is at most ρ, but can be smaller. Recall that

ξk,min =
√

1 + σ2
min(Hk) > 1 ,

which is large when the singular values of Hk are large.

4.2.2. Schur decomposition. The eigenvectors usually do not form an orthog-
onal set of vectors and are not even guaranteed to exist (in the defective case). The
Schur decomposition always produces orthogonal vectors and always exists.

For the linearized quadratic eigenvalue problem, the Schur decomposition of S is

S

(

U
UT

)

=

(

U
UT

)

T.

The diagonal elements of T are the Ritz values. (In the case of real matrices, T is in
pseudo-upper triangular form when a Ritz value is complex. For the details see [5].)

Let HkZk = ZkTk be the Schur decomposition of Hk. Define the residual r∗k =
βke∗kZk. The Schur vectors computed from a Q-Arnoldi triple have the form

Uk = VkZk =

(

VkZk

VkZkTk + vk+1r
∗
k

)

. (4.9)

The structure in the Schur vectors is lost in the Krylov subspace for the same reasons
as the Ritz vectors. However, we can similarly select the upper or lower components
as Schur vectors. When we do this, we do not only add an error in the recurrence
relation but also perturb the orthogonality of the basis vectors. We study this problem
in detail in §4.4.

4.3. Implicit restarting.

4.3.1. Implicit QR step. When k gets large, the storage and computational
costs of the Arnoldi method can become unacceptably high. Therefore, some form
of restarting or reduction of the basis is desirable. The idea is to reduce the Krylov
subspace by throwing away that part that is very unlikely to significantly contribute
to the convergence of the wanted eigenvalues.
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One way to perform such a reduction is called implicit restarting and was proposed
by Sorensen [21]. Also see [21] [18] [10] [11] [16]. The idea is to apply an orthogonal
transformation to Hk that pushes the p desired Ritz values of Hk to the principle
p× p block. The orthogonal transformation produces a reduction of the subspace of
dimension k + 1 to p + 1 keeping the p desired Ritz values.

When Z results from the QR factorization Hk − µI , we have that

Z∗kHk = Rk + µZ∗kI ,

and so

ZkZ∗kHkZk−1 = Zk

(

RkZk−1 + µI
)

= HkZk−1 .

So, if Q = {Vk+1, Hk, wk+1} ∈ Qk(s), following Theorem 4.5, TZQ ∈ Qp=k−1(S).

4.3.2. Purging. Another way to reduce the subspace dimension is purging [10].
The idea here is to purge the undesired part of the Schur factorization of Hk.

Recall the definitions of Tk, Zk and rk from §4.2.2. By multiplying on the right
by Zk, the Arnoldi recurrence relation (3.1) can be written in terms of Schur vectors
as follows :

SVkZk −VkZkTk = vk+1r
∗
k . (4.10)

Let the Schur form be ordered so that the last k − p diagonal elements in Tk are
unwanted Ritz values. The idea of purging is to keep the first p Schur vectors in the
basis. Removing the last k − p columns from (4.10) produces

SVkZp − [VkZp vk+1]

(

Tp

r∗p

)

= 0 . (4.11)

where Zp are the first p columns of Z, Tp is the leading p× p block of Tk and rp are
the first p elements of rk. There exists a unitary Up so that

H̃p =

(

Up 0
0 1

)∗(
Tp

r∗p

)

Up

is p + 1× p upper Hessenberg [5].

Let T have transformation matrix

(

ZpUp 0
0 1

)

(Definition 4.4). From

HkZp =

[

Zp 0
0 1

](

Tp

r∗p

)

we derive that
[

Zp

1

][

Zp

1

]∗
HkZp = HkZp

and so
[

ZpUp

1

] [

ZpUp

1

]∗
HkZpUp = HkZpUp .

So, T {Vk+1, Hk, wk+1} ∈ Qp(S).
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4.4. Locking. Suppose that the first l elements in rk are smaller than a con-
vergence tolerance. The idea of locking is to set these small elements explicitly to
zero assuming that the Schur vectors are exact. Decompose r∗k = [r∗l r∗k−l]. Locking
introduces an error in the recurrence relation :

SUk − [Uk vk+1]

(

Tk

[0 r∗k−l]

)

= vk+1(r
∗
l 0) . (4.12)

This can be considered as a backward error on the solution. The corresponding Q-
Arnoldi triple is in Q(S, ‖rl‖, 0). The reasons for the use of locking in eigenvalue codes
are the reduction of the dimension of the Krylov subspace and the computation of
multiple eigenvalues without the need of block methods. Also, in combination with
restarting, locking ensures that the residual norm of a Ritz pair of interest remains
small : it is possible that with restarting a direction that is in favour of improving a
Ritz vector is removed.

For linear problems it is accepted that the recurrence relation of Arnoldi’s method
is violated by a small term. The residual term in the right-hand side of (4.12) is usually
considered as a backward error on S. The Bauer-Fike Theorem [20, Theorem 3.6]
shows an upper bound to the perturbation of the eigenvalues that is proportional to
‖rl‖ and that is small when the eigenvectors associated with different eigenvalues are
almost orthogonal. The Schur vectors form an orthogonal set, so the orthogonality
is preserved. In the following, we aim to preserve the structure of the Schur vectors
(4.9). As we will see, this modifies the error on the recurrence relation, and destroys
the orthogonality. The goal of the section is to restore the orthogonality and analyse
the impact on the recurrence relation using the results from §4.1.3.

When we use the upper component as Schur vectors of the quadratic eigenvalue
problem, the Schur vectors obtain the form

Ũk =

(

VkZl U1,k−l

VkZlTl U2,k−l

)

= Uk −
(

0 0
vk+1r

∗
l 0

)

. (4.13)

Following (4.6) with g∗ = −[r∗l 0], we find

H̃k =

(

Tk

[0 r∗k−l]

)

.

This is precisely the matrix we want to have with locking. Recall that ‖G̃k‖ '
‖Gk‖ ∼ ‖rl‖ is small. The new basis can be orthogonalized by applying an appropriate
transformation.

Similarly, we can use the lower part of Uk as Schur vectors. Decompose

Zk = [Zl Zk−l] and Tk =

[

Tl Tl,k−l

Tk−l

]

.

Now define Schur vectors using the lower part of Ul :

Ûk =

(

VkZl + vk+1r
∗
l T−1

l U1,k−l

VkZlTl + vk+1r
∗
l U2,k−l

)

= Uk −
(

vk+1r
∗
l T−1

l 0
0 0

)

. (4.14)

This assumes that Tl is non-singular. With g∗ = −[r∗l T−1
l 0], following (4.7), the

structure of the vectors is restored by using

Ĥk =

(

Tk

[0 r̂∗k−l]

)

,
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τ 1 104 106

κ(H) 30.0 1 · 108 1 · 1012

‖H‖2 1.6 1 · 108 1 · 1012
√

γ2
m

+δ2
m

+1.0√
m+1

1.03 3.66 106 1.66 1010

γ⊥ γR γ⊥ γR γ⊥ γR

Arnoldi 1 · 10−13 1 · 10−16 5 · 10−14 1 · 10−16 2 · 10−13 2 · 10−16

Q-Arnoldi 3 · 10−13 1 · 10−16 4 · 10−10 6 · 10−12 3.0 4 · 10−6

Table 5.1
Illustration of instabilities in the Q-Arnoldi method. γ⊥ = ‖I −V∗

k+1
Vk+1‖F is the deviation

of orthogonality and γR the error on the recurrence relation.

with r̂∗k−l = r∗k−l − r∗l T−1
l Tl,k−l. The most important point is that the residual term

corresponding to the first l Ritz values is set equal to zero. The residual terms of the
remaining Ritz values are modified. This is not the case when Ũk is used as Schur
basis. The error on the recurrence relation is again proportional to ‖rl‖.

5. Numerical examples.

5.1. Illustration of numerical instabilities in Q-Arnoldi. From §3.4, we
can see that the Q-Arnoldi method may lose stability when γk is large. This is only
possible when ‖H‖2 and κ(Hk) are large.

We have run k = 10 iterations of the Arnoldi method for a problem of dimension
n = 10, 000 with K = I , C = τI and M = τdiag(µ1, . . . , µn) where µj = 1/j
for three values of τ . Table 5.1 shows (3.6). The (traditional) Arnoldi algorithm
always produces accurate results. The Q-Arnoldi algorithm is sensitive to large τ ’s.
The example illustrates that scaling the matrices may help improve the numerical
stability of the Q-Arnoldi algorithm : indeed, the eigenvectors are the same for all
cases, independent of τ , and the eigenvalues of (1.1) are divided by τ , but when τ = 1,
K, C, and M have norms around one.

5.2. Selection of component of Ritz vectors. Consider the quadratic eigen-
value problem (1.1) with K = I , M = diag(µ1, . . . , µn), and C = 0.01M with µj = 1/j
for n = 10, 000. We have run 10 steps of the Arnoldi method with an initial vector

with equal components. Let (θ, x =

(

x1

x2

)

) be a Ritz vector returned by the Arnoldi

method. Define

ρ = ‖A−1(θA −B)x‖
ρ1 = ‖K−1(θ2K + θC + M)x1‖
ρ2 = ‖K−1(θ2K + θC + M)x2‖ .

Table 5.2 shows the Ritz values and the corresponding residual norms. For this
example, x2 shows to be a better Ritz vector than x1 for the large Ritz values.

5.3. Quadratic eigenvalue problem for an acoustic box. In this section we
study the problem of an acoustic box with walls covered with carpet with dimensions
0.54m× 0.54m× 0.55m. The material has a complex speed of sound 340 + i3.4 and
the density is 1.225kg/m3. The box is discretized with 64710 hexahedral elements.

The matrices are produced by ACTRAN [4]. The problem to be solved has the
form (1.1) and n = 13, 623. We want to compute the 50 eigenvalues with imaginary
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Ritz value ρ ρ2 ρ1

1.0099 2 · 10−7 3 · 10−8 2 · 10−7

0.509808 1 · 10−4 2 · 10−5 7 · 10−5

0.342946 3 · 10−3 6 · 10−4 1 · 10−3

0.256429 2 · 10−2 3 · 10−3 5 · 10−3

0.183618 3 · 10−2 5 · 10−3 7 · 10−3

0.117528 3 · 10−2 5 · 10−3 4 · 10−3

−0.00203237 7 · 10−5 5 · 10−4 1 · 10−5

0.00250052 5 · 10−3 6 · 10−5 2 · 10−4

0.0381711± i0.00132763 3 · 10−2 2 · 10−3 2 · 10−3

Table 5.2
Comparison of Ritz vectors

Table 5.3
q

γ2
k

+ δ2
k

for the different restarts in the solution of the quadratic eigenvalue problem of the box

before restart 2.14777
first restart 1.93901
second restart 1.73840
third restart 1.69189

part larger than 600. We applied the shift σ = 600i, see §3.3. We used the following
algorithm.

Algorithm 5.1 (Arnoldi for eigenvalues).
1. Choose v1 randomly and normalize.
2. Until the wanted eigenvalues have converged, do :

2.1. Build a Krylov subspace of dimension k.
2.1. Compute Ritz values, Ritz vectors and residual norms.
2.2. Order the Ritz values in increasing distance to σ.
2.3. Purge the last m− p columns of the recurrence relation.

We solved the problem using the Arnoldi method with k = 100 and p = 50. The
first iteration costs k = 100 products with S. In Step 2.3, the purging operation
keeps p iteration vectors with Ritz values corresponding to the Ritz values nearest σ.
The goal of the next iterations is to improve these values. The next call to Step 2.1
requires only k− p additional iterations to obtain a subspace of dimension k. After 3
restarts, 50 Ritz values were computed with residual norms smaller than 10−8. The
computations were carried out on a Linux PC. The final loss of orthogonality in the
Q-Arnoldi algorithm was

‖I −V∗
k+1Vk+1‖F ' 3.1 10−13 .

For the Arnoldi algorithm we also had

‖I −V∗
k+1Vk+1‖F ' 3.1 10−13 .

Table 5.3 shows
√

γ2
k + δ2

k for the different restarts. For all restarts,
√

γ2
k + δ2

k is
small, so we do not expect numerical difficulties. This is no surprise since the shift
σ = 600i is not close to an eigenvalue of (1.1), so ‖Hk‖2 ≤ ‖S‖2 is small.
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6. Conclusions. The Q-Arnoldi algorithm is a memory efficient implementation
of the Arnoldi method for specific choices of linearization of the quadratic eigenvalue
problem.

We have proposed an algorithm that preserves the structure of the Schur vectors,
and that shows that implicit restarting, purging and locking similarly preserve the
structure of the Arnoldi vectors.

As for the choice of linearization, due to A−1, the Arnoldi method produces the
same results for any linearization in L1. The same conclusion holds for the SOAR
method. This also implies (as we already knew) that the Arnoldi method in its
standard form is not able to preserve structure.

An important conclusion lies in the influence of ξmin and ξmax. The ratio should
not be far away from one in order to reduce the chance of cancelation in the numerical
computations. In addition, the components of the Ritz vectors lie in the same direc-
tion when ξmin is large. However, as we mentioned earlier, for the shift-and-invert
transformation, ξmin usually lies close to one. We have some freedom in choosing
the pole σ to keep ξmax low. The derivation of scalings of S1 and S2 is still an open
problem. Note that S1 and S2 are only known in factored form −K−1C and −K−1M
respectively.

The conclusion is not the SOAR method is useless when more than one eigenvalue
needs to be computed or restarting the Arnoldi process is required. The Q-Arnoldi
algorithm produces a Krylov subspace, whereas the SOAR method projects K, C and
M on Vk+1. This is still possible in a post-processing step in the Q-Arnoldi algorithm
in order to improve the Ritz values or impose spectral structure.

Open problems are restarting the SOAR method, and other linearizations than
those in L1, e.g.

{

I − λS : (I − λS)

(

α0 + λα1

β0 + λβ1

)

=

(

η1Q(λ)
η2Q(λ)

)

, α0,1, β0,1, η1,2 ∈ C

}

The extension to higher order polynomials,

(A0 + λA1 + · · ·+ λp)u = 0

is straightforward and leads to a similar algorithm with similar conclusions.
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