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Abstract

CFSE based tracking of the lymphocyte proliferation using flow cytometry is a
powerful experimental technique in immunology allowing for the tracing of labelled
cell populations over time in terms of the number of divisions cells undergone. Inter-
pretation and understanding of such population data can be greatly improved through
the use of mathematical modelling. We apply a heterogeneous linear compartmental
model, described by a system of ordinary differential equations similar to those pro-
posed by Kendall. This model allows division number-dependent rates of cell prolif-
eration and death and describes the rate of changes in the numbers of cells having
undergone j divisions. The experimental data set that we specifically analyze specifies
the following characteristics of the kinetics of PHA-induced human T lymphocyte pro-
liferation assay in vitro: (i) the total number of live cells, (ii) the total number of dead
but not disintegrated cells and (iii) the number of cells divided j times. Following
the maximum likelihood approach for data fitting, we estimate the model parameters
which, in particular, present the CTL birth- and death rate ”functions”. It is the first
study of CFSE labelling data which convincingly shows that the lymphocyte prolif-
eration and death both in vitro and in vivo are division number dependent. For the
first time, the confidence in the estimated parameter values is analyzed by compar-
ing three major methods: the technique based on the variance-covariance matrix, the
profile-likelihood-based approach and the bootstrap technique. We compare results
and performance of these methods with respect to their robustness and computational
cost. We show that for evaluating mathematical models of differing complexity the
information-theoretic approach, based upon indicators measuring the information loss
for a particular model (Kullback-Leibler information), provides a consistent basis. We
specifically discuss methodological and computational difficulties in parameter identifi-
cation with CFSE data, e.g., the loss of confidence in the parameter estimates starting
around the 6-th division. Overall, our study suggests that the heterogeneity inherent
in cell kinetics should be explicitly incorporated into the structure of mathematical
models.
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1 Introduction

A standard assay for the functional analysis of human T cells is to test their proliferative
capacity to in vitro stimulation with mitogens, superantigens or conventional antigens.
The tests based upon mitogens, such as PHA1 or CON A2, act on naive and memory
T lymphocytes, CD4+ and CD8+ T cells. These activators induce proliferation without
the need for T cell receptor signalling. The tests are therefore a global assessment of the
ability of T cells to divide and proliferate.

One conventional method that can be used to assess proliferation of cells is a 3H-
thymidin incorporation assay. Radioactive thymidin is incorporated into the DNA of
dividing cells, and the amount of radioactivity in the cell fraction is quantified. The level
of radioactivity after stimulation of T cells with antigen versus with medium only gives
an estimate of the proliferative response of the lymphocytes. A more recent FACS3 based
approach to study proliferative responses has the following advantages: the avoidance of
radioactivity, the ability to differentiate between CD4 and CD8 T cell responses and the
ability to study the acquisition of differentiation markers during proliferation.

The flow cytometry analysis of CFSE4 labelled T-lymphocyte proliferation is a power-
ful technique for quantifying the labelled cell populations over time in terms of the number
of divisions cells undergone. The proliferation of CFSE labelled cells is detected as progres-
sive halving of cellular fluorescence with every cell division completed. CFSE histograms
give information on the fraction of lymphocytes that have divided once, twice, etc. The
percentage of T-cells having undergone from 1 up to 10 divisions can be quantified by the
flow cytometry. However, giving the percentages of divided cells provides little insight
into the turnover of the cells. Another factor is that the fraction of the antigen/mitogen-
responsive T cells among the PBMC5 population used in the assay is highly variable. The
advantage of the CFSE assay compared to thymidine incorporation assays is that indi-
vidual responsive cells rather than bulk populations can be studied. This is particularly
useful in patients with immunodeficiencies, where the numbers of T-lymphocytes might
be reduced by a factor 10 to 30. For practical purposes, it is important to describe the in-
formation on CFSE assay, related to the immune status of the patient under examination,
using meaningful and simple terms, such as the responder cell frequency, the proliferation
capacity of the T-lymphocyte population, the mean doubling time and its variability. A
fundamental issue which still remains unexplored is whether the lymphocyte division and

1phytohemagglutinin: A phytomitogen from plants that agglutinates red blood cells. The term is
commonly used specifically for the lectin obtained from the red kidney bean (Phaseolus vulgaris) which is
also a mitogen that stimulates T lymphocytes more vigorously than B lymphocytes

2Concanavalin A: a lectin isolated from the jack bean, Canavalia ensiformis
3fluorescence activated cell sorter
4carboxyfluorescein diacetate succinimidyl ester
5peripheral blood mononuclear cells
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death rates depend on the number of divisions lymphocytes have undergone. A thorough
quantitative interpretation and understanding of such complex population data requires
the use of computational analysis based upon appropriate mathematical models.

The earlier approaches to the CFSE data analysis were based upon assumption that
there is no death in the proliferating lymphocytes. The histogram data were interpreted
using a simple discrete doubling model [11,19] or the exponential growth model [1]. These
models allowed to estimate the frequency of responding cells and the specific exponential
growth rates, respectively. Later on, incorporation of the exponential death into the CFSE
data analysis based upon the discrete doubling model was implemented [10]. The so called
’cellular calculus’ framework was used to estimate the mean division number with its
standard deviation and the average division cycle time. Recently, a systematic analysis of
the parameters amenable to estimation from CFSE data was presented [9]. The biological
Smith-Martin model of the cell cycle [16] was translated into a set of differential equations,
modelling the structured cell division. The underlying assumption in the analysis was that
the cell population is a homogenous one (i.e. the parameters of cell division and death are
independent of time and the number of divisions cells have undergone).

Few aspects of T-cell heterogeneity were addressed using mathematical models. A
discrete Leslie-type model was applied to estimate from CFSE data the human naive versus
memory T cell turnover parameters: the average transit time (lag time) from division 0
to 1, the average division rate and loss rate in all other divisions [17]. Later study [6]
showed that a homogenous model of T lymphocyte growth is not consistent with the
CFSE labelling data given in [10]. The authors considered delay differential equations
for modelling the Smith-Martin scheme of cell growth. They assumed a difference in the
commitment and death rates between the populations of naive lymphocytes and those
which have made at least one division. The model fits well to the data representing a
short-term CFSE-labelled T cell dynamics (hours 60 to 84) and predicts a substantial
difference in the time needed to complete the first division and the subsequent rounds
of divisions. The analysis presented in [6, 9] assumes that after initial transient, the
lymphocyte population approaches the phase of the so called ’steady state of exponential
growth’. This phase is characterized by time-independent age distribution. The validity
of this simplifying assumption, which can, in general, be expected to hold true after a long
time [15], in the context of the CFSE assay deserves further examination.

In the present study we address the following practically relevant issues which have
not been thoroughly considered yet:

• can the lymphocyte division and death rates be reliably quantified from typical data
sets on CFSE labelling using mathematical models, and are the rates dependent on
the number of divisions the cells have undergone?

• reliability and performance of major computational approaches to the analysis of
the confidence in the parameter estimation with respect to CFSE data fitting;

• what type of difficulties (methodological and computational) are inherent in the
analysis of CFSE proliferation assay and how one could overcome those?
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The content of this paper is as follows. Using a set of original data on in vitro growth
of human CFSE-labelled cells, described in Section 2, we investigate the appropriateness
of a heterogeneous linear compartmental model, introduced in Section 3, for the analysis
of the CFSE proliferation assay. Our kinetic analysis of the CFSE assay data is based
upon the maximum likelihood parameter estimation and facilities of the MATLAB soft-
ware package we use, as presented in Section 4. We show that the birth rate as a function
of the division number appears to be bell-shaped, whereas the death rates are close to zero
until the division age gets equal to three and increase thereafter. We compare predictions
of the heterogenous model with the predictions of a simplified homogenous model which
assumes the birth and death rates being constant across the experiment. The maximum
likelihood approach allows us to perform the confidence analysis of the best-fit parameter
estimates and to evaluate the Akaike indicators measuring the information loss for a par-
ticular model. In Section 5, we compare the performance and computational cost of three
major computational methods for confidence intervals estimation: the variance-covariance
matrix approach, the likelihood profile method and the bootstrap approach. To under-
stand capabilities of the heterogenous model, we compare its performance with a version
of the Smith-Martin model from [9] by considering both our in vitro data and the in vivo
data presented in [9], cf. Section 6. The heterogeneous model also predicts that the in vivo
turnover rates of T lymphocytes do depend on the lymphocyte division number. Finally,
we discuss the limits of a reliable birth and death rates estimation from finite time series
of CFSE data.

2 CFSE data

The data on cell kinetics were obtained using PHA-proliferation assay as described below.
Peripheral blood mononuclear cells (PBMC) were labelled with a fluorescent dye (CFSE),
which penetrates and attaches to the inner side of the cell membrane. The mitogen
stimulator PHA was added to the PMBC sample in vitro to induce proliferation of T
cells present in the sample. Each time a T cell divides, it looses about half of its staining
intensity. At regular times after the onset of PHA-stimulation, the cells are harvested,
stained with antibodies to CD4 and CD8 and analyzed by flow cytometry. The CFSE
histogram represents the distribution of the cells with respect to the CFSE expression
level. It is split into bins, which specify the percentages of live CD4 T cells that have
undergone from 0 to 7 cell divisions. The absolute number of live cells per well was
determined by microscopy. In addition to the live cells, the absolute number of dead cells
was defined by the trypan blue staining microscopy. We also estimated the percentage of
dead cells as determined by FACS analysis of an uptake of the dye propidium iodine (PI).
A sound correlation between the dead cell counts and the PI-positive cells was observed.

The PMBC sample consists of T- and B-lymphocytes, NK cells and monocytes, the
relative proportion of which is unknown. During the first three days of culture there is
a significant number of live cells in the well, which are not lymphocytes. This implies
that the dead cell data, at least initially, characterize the death of heterogeneous cell
population, rather then the T lymphocyte population. Another confounding aspect of the
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data is that the transfer of the PMB cells from physiological in vivo conditions into in vitro
culture will cause a death of many cells due to the change in milieu, temperature, plastic
walls, etc. Notice that the specificity of T-lymphocyte gating gets better with time, and
from day 4 to day 7 the gate used covers almost all live T cells as counted. The relative
error of the measurements was within 20%.

Table 1 presents the set of CFSE data that we analyzed. These data specify the
following characteristics of the kinetics of PHA-induced cytotoxic T lymphocyte (CTL)
proliferation assay in vitro from day 3 to day 7: (i) the total number of live cells, N(ti),
(ii) the total number of dead but not disintegrated cells, D(ti), and (iii) the number of
cells divided j times, Nj(ti), i = 0, 1, . . . , 4, j = 0, 1, . . . , 7.

Time Total Total
days number of number of Numbers of cells w.r.t. the number of divisions (j) they undergone
ti live cells dead cells Nj(ti)

N(ti) D(ti) 0 1 2 3 4 5 6 7
3 1.4 × 105 1.6 × 104 29358 22876 43372 39970 5208 98 14 0
4 2.5 × 105 2.4 × 104 16050 12600 22650 57025 96350 46950 2500 25
5 4.4 × 105 6.0 × 104 14476 14784 25344 58652 141460 156290 32076 440
6 5.0 × 105 1.2 × 105 13500 12150 24150 55000 137850 188950 69450 2150
7 5.7 × 105 1.3 × 105 13509 12198 21603 51927 140560 232160 96102 3420

Table 1: Quantitative dynamics of human peripheral blood mononuclear cells following stimulation
with PHA in vitro. At various times, CFSE profiles were obtained by flow cytometry. The total
numbers of live, N(ti), and dead, D(ti), lymphocytes, and the distribution of lymphocytes with
respect to the number of divisions they have undergone, Nj(ti), j = 0, 1, . . . , 7, were followed from
day 3 to day 7 at the indicated times ti, i = 0, 1, . . . , 4.

The availability of data on N and Nj allows one to estimate the frequency of responding
precursors following the approach in [19]. For the data in Table 1 and under the simplifying
assumption that there is no death, the analysis suggests that by day 7 about 72% of cells
have divided at least once. In addition, one can characterize the proliferative capacity,
PC(t), of the population at time t, i.e. the average number of daughter cells generated
per responding precursor by t. We suggest the following expression:

PC(ti) =
N(ti) − N0(ti)

∑7
j=0

Nj(ti)
2j − N0(ti)

=
1 − f0(ti)
∑7

j=1
fj(ti)

2j

, (2.1)

where fj := Nj/N , j = 0, 1, . . . , 7, is the fraction of cells divided j times, i.e. distribution
of cells with respect to the number of divisions they undergone. The CFSE assay data
suggest, cf. Fig. 1, that by day 7 the proliferation capacity of the population reaches a peak
value of 15.7 cells per responding cell with the estimated maximum expansion factor of
about 3 per cell per day. The overall proliferation capacity curve follows a logistic growth
pattern and the increase rate slows down after day 4.

The above approach is useful in characterizing the net growth parameters of the tem-
poral evolution of a cell population. In reality, cell kinetics is affected by the cellular
heterogeneity with respect to the division rate, death, etc. It is important practically to
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assess more informative quantities such as generation times, the mean number of divisions,
etc. Let us define mathematically the above parameters and highlight the connection be-
tween them.

The doubling time of the population, τd, is defined as the time it takes population to
double. It is related to the exponential growth rate (say α) by τd = ln(2)/α. This quantity
characterizes the excess of births over deaths in a unit time interval. The mean generation
time is defined as the age s at which a cell divides measured from birth of the cell. The
generation time varies from cell to cell. If one denotes the generation time distribution
function by g(s), then the mean generation time can be determined as τg =

∫ ∞

0 sg(s)ds,
whereas the variance in the generation times is defined as σ2

g =
∫ ∞

0 (τg − s)2g(s)ds [15].
Although one can expect the mean doubling time to be longer than the mean generation
time, in fact it appears to be the other way around. The approximate relationship is
presented in [15] as τg ≈ τd + 0.151σ2

g/τ
2
d .

Another useful time-dependent characteristics of cell kinetics are the growth of the
total cell population N(t), the numbers of precursors P (t) that would have generated the
current lymphocyte population in the absence of death, the mean number of divisions µ(t)
and the variance σ2 in the number of divisions cells have undergone, which are defined,
cf., e.g. [9], as

N(t) =

7
∑

j=0

Nj(t), P (t) =

7
∑

j=0

Nj(t)2
−j , µ(t) =

7
∑

j=0

jfj(t), σ2(t) =

7
∑

j=0

j2fj(t)−µ2(t).

(2.2)
These can be easily computed either using the data or the ”best-fit” solution of a mathe-
matical model of cell kinetics, cf. Section 4.

3 Mathematical models

To model the population dynamics of CFSE labelled lymphocytes following the PHA
stimulation, we consider two compartmental models, described by systems of linear ordi-
nary differential equations (ODEs). Mathematically, these models are just two versions of
the discrete compartmental model by Kendall [12], originally proposed for describing the
age-dependent cell cycle progression. In our setting, the compartments represent the cell
populations, which have made a specified number of divisions, rather than the stages of
the cell cycle as considered originally. The two models, that we refer to as heterogenous
and homogenous compartmental models of cell population kinetics, differ by the assump-
tion on the dependence of lymphocytes proliferation and death rates on the number of
divisions lymphocytes undergone. Below Nj(t) and D(t) denote the population sizes at
time t of live lymphocytes having undergone j divisions and dead but not disintegrated
lymphocytes, respectively.

3.1 Heterogenous compartmental model

The heterogenous compartmental model assumes that the per capita proliferation and
death rates of T-lymphocytes, αj , respectively βj , depend on the number of divisions
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lymphocytes undergone. The rates of change of Nj(t) and D(t) with time is represented
by the set of equations

dN0

dt (t) = −(α0 + β0)N0(t),

dNj

dt (t) = 2αj−1Nj−1(t) − (αj + βj)Nj(t), j = 1, . . . , J,

dD
dt (t) =

∑J
j=0 βjNj(t) − δD(t).

(3.1)

The first term on the right of equations for Nj(t) represents the cell birth (influx from
previous compartment because of division), while the last term on the right represents
cell loss (outflux from the compartment) due to division and death. In the equation
for dead cells, δ denotes the specific (fractional) decay rate of dead lymphocytes due to
disintegration and phagocytosis.

Assuming that the population sizes at time t0 are specified by initial data Nj(t0) and
D(t0), and the condition αj + βj 6= αi + βi is fulfilled for i 6= j, the solution of the model
is expressed in the form

Nj(t) =

j
∑

s=1







2sNj−s(t0)

j−1
∏

m=j−s

αm

j
∑

i=j−s

e−ci(t−t0)
j

∏

k=j−s,k 6=i

(ck − ci)
−1







+ Nj(t0)e
−cj(t−t0),

j = 0, 1, . . . J, t ≥ t0,

D(t) =
J

∑

j=0

βj







j
∑

s=1

2sNj−s(t0)

j−1
∏

m=j−s

αm

j
∑

i=j−s

e−ci(t−t0) − e−δ(t−t0)

δ − ci

j
∏

k=j−s,k 6=i

(ck − ci)
−1







+
J

∑

j=0

βjNj(t0)
e−cj(t−t0) − e−δ(t−t0)

δ − cj
+ D(t0)e

−δ(t−t0), t ≥ t0,

(3.2)

where cj := αj + βj . The availability of the closed-form solution to the model reduces the
computational treatment of the model-driven data analysis.

3.2 Homogenous compartmental model

A simplified version of the heterogenous model can be obtained if we assume that the
proliferation and death rates of cells, α and β, do not depend on the number of divisions
cells undergone. For practical examples, we refer to cell kinetics studies [6, 9, 14, 15]. The
corresponding ’homogenous compartmental model’, is defined by the following system of
ODEs

dN0

dt (t) = −(α + β)N0(t),

dNj

dt (t) = 2αNj−1(t) − (α + β)Nj(t), j = 1, . . . , J,

dD
dt (t) =

∑J
j=0 βNj(t) − δD(t),

(3.3)

7



with the same initial data as for heterogenous model (3.1). The solution of this model for
t ≥ t0 is given by

Nj(t) =e−c(t−t0)
j

∑

i=0

(2α)i (t − t0)
i

i!
Nj−i(t0), j = 0, 1, . . . , J,

D(t) =β

J
∑

j=0

j
∑

i=0

(2α)iNj−i(t0)

{

(−1)i

(δ − c)i+1

(

e(δ−c)(t−t0)
0

∑

k=i

((t − t0)(c − δ))k

k!
− 1

)

}

e−δ(t−t0)

+ D(t0)e
−δ(t−t0),

where c := α + β.

4 Parameter estimation

We search for a vector of best-fit parameters, p∗, for which the model solution Nj(t;p
∗),

D(t;p∗) is closest, in a certain sense, to the given experimental data at the time points of
the measurements, i.e. the solution fits the data in an optimal way. The vector p, p ∈ R

L,
has the components

p := [α0, α1, . . . , α7, β0, β1, . . . , β7, δ],

and
p := [α, β, δ]

for models (3.1) and (3.3), respectively. Our data set consists of cell numbers N i
j := Nj(ti)

and Di := D(ti) measured at times ti, cf. Table 1, where t0 = 72, t1 = 96, t2 = 120, t3 =
144, t4 = 168 (hours). The values N 0

j and D0 are used as the initial data Nj(t0) and
D(t0) for the models.

4.1 Maximum likelihood approach

To estimate the division and death rates of cells, we fit a model to the given data set by
maximizing the likelihood that the data did arise from the model. Applying the maximum
likelihood approach to our problem, we assume that

• the observational errors, i.e. the residuals defined as a difference between observed
and model-predicted values, are normally distributed,

• the errors in observations at successive times are independent,

• the errors in the components of the state vector are independent,

• the variance of observation errors (σ2) is the same for all the state variables and
observation times.
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Under these conditions, the log-likelihood function specifying the probability of observing
the given data set is given by

ln(L(p; σ)) = −0.5
(

nd ln(2π) + nd ln(σ2) + σ−2Φ(p)
)

, (4.1)

where nd is the total number of scalar measurements and Φ(p) is an ordinary least-squares
function

Φ(p) =
4

∑

i=1

(

7
∑

j=0

(N i
j − Nj(ti;p))2 + (Di − D(ti;p))2

)

, (4.2)

see [2, 3] for further details.
The problem of maximizing the likelihood function is equivalent to that of minimizing

Φ(p), provided that σ2 is assigned the value

σ∗2

=
1

nd
Φ(p∗), (4.3)

which follows from the optimality condition ∂(ln(L(p∗; σ)))/∂σ2 = 0. Here p∗ is the
parameter vector, which gives a minimum to the ordinary least-squares function.

Relevant details of the computational treatment of the minimization problem are pre-
sented in Section 5.4. Figure 2 shows the experimental data and the solutions of the two
models corresponding to the best-fit parameter estimates. The kinetics of cells which have
undergone more than two divisions is consistently reproduced by the heterogenous model.
In contrast, the data characterizing the kinetics of the first two divisions appear to be a
problem for both models. This discrepancy might be related to a large observation error
for the number of T cells that have undergone one or two divisions. Indeed, the decline in
the number of undivided cells is not accompanied by an increase in the number of cells that
have divided once or twice, which seems to be counterintuitive. As shown in Fig. 3 (left),
the growth of the total cell population N slows down after day 5. This concave pattern is
consistently captured by the heterogenous model, whereas the homogenous model predicts
a biased dynamics. The numbers of precursors P estimated from the data and predicted
by the models are close to each other. Figure 3 (right) shows that the mean number of
divisions cell populations have undergone (µ) is predicted reliably by the heterogenous
model. However, the evolution of the variance (σ2) in the mean division number over time
is not precisely reproduced. The homogenous models gives a poor fit of the µ and σ2.

The value of the objective function at the computed minimum is Φ(p∗) ≈ 1.27 × 109

for model (3.1) and Φ(p∗) ≈ 6.15 × 1010 for model (3.3). Obviously, an increase in the
number of the heterogenous model parameters provides a better description of the data
in terms of the objective function. On the other hand, small data sets do not support
complex models with a number of parameters above some threshold as the variance in the
parameter estimates increases (see the next section). The information-theoretic approach
to model evaluation suggests that in addition to the bias in the data description one has
to consider the parsimony principle, i.e., to incorporate the number of observations and
the number of parameters in quantitative ranking of different models [5]. The Akaike
criterion, characterizing the information complexity of the models, is based upon the
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Kullback-Leibler notion of the directed distance between the given model and an ’ideal
model’ of the data. It makes use of the maximum likelihood estimation to evaluate the
information loss associated with the specific model for the given data set. Because our
interest is in the relative size of the indicators, we evaluate the revised Akaike indicators
obtained by discarding extraneous terms,

µAIC = nd ln(Φ(p∗)) + 2(L + 1), (4.4a)

µcAIC = nd ln(Φ(p∗)) + 2(L + 1) +
2(L + 1)(L + 2)

nd − L − 2
, (4.4b)

see [5] for technical details. The first version (4.4a) is satisfactory if nd > 40(L + 1),
otherwise (4.4b) should be used. The value of Akaike index µcAIC equals approximately
831 and 904 for models (3.1) and (3.3), respectively. Therefore, the heterogenous model
is closer to the true model of the data as indicated by the smaller value of the information
loss.

4.2 Best-fit T-lymphocyte turnover parameters

Parameter estimation results obtained using the ordinary least-squares approach for mod-
els (3.1) and (3.3) are summarized in Table 2. The best-fit estimates of the heterogenous
model parameters suggest that the lymphocyte proliferation and death rates are not con-
stant but vary essentially with the division number in a non-monotone way, cf. Fig. 4.
Indeed, the division rate increases by about four-fold between the naive cells and the cells
that have undergone two divisions and gradually declines for cells which made more than
three divisions. The mean population doubling time given in Table 2 is about two days
for the first division of naive lymphocytes and shortens to 13 hours after two divisions.
The death rates appear to be close to zero until the division age of cells gets three and
after that they start to increase. Importantly, the turnover parameter estimates look
counter-intuitive for cells older than six divisions and this aspect will be analyzed below.

The estimation results obtained with the homogenous model, cf. Table 2 and Fig. 4,
are different from those of the heterogenous model and, in the context of division num-
ber structured cell kinetics, do not provide appropriate characterization of the turnover.
Therefore, the use of the homogenous model does not seem to be justified for parameter
estimation of cell kinetics.

The best-fit parameter estimates can be used to predict the number of lymphocytes
responding to PHA-stimulation, i.e. the value N0 at time t = 0. From the explicit solution
of model (3.1), the kinetics of naive lymphocytes follows the exponential behavior

N0(t) = N0(72)e
−(α0+β0)(t−72), t ≥ 72 (hours).

Backward extrapolation from 72 hours to the beginning of the experiment suggests that
the number of responding lymphocytes at time t = 0 equals 7.54×104 cells, i.e. about 38%
out of the total 2×105 cells added to the culture on day 0 respond to the PHA stimulation.
The accuracy of the estimate, e.g. the 95% confidence range, can be evaluated using the
results of Table 3. The corresponding confidence interval is [29%, 54%].
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Heterogenous Division rate Death rate Disintegration Doubling time
model (3.1) (1/hour) (1/hour) rate (1/hour) (hours)

α0 1.31 ×10−2 β0 2.33 × 10−15 δ 4.52 × 10−2 52.8
α1 3.10 ×10−2 β1 7.98 × 10−13 22.4
α2 5.21 ×10−2 β2 5.56 × 10−13 13.3
α3 4.95 ×10−2 β3 1.54 × 10−14 14.0
α4 2.94 ×10−2 β4 7.12 × 10−3 23.5
α5 7.28 ×10−3 β5 2.69 × 10−2 95.3
α6 2.26 ×10−2 β6 7.07 × 10−15 30.6
α7 1.37 β7 6.249 ×10−11 0.5

Homogenous
model (3.3)

α 2.13 × 10−2 β 3.35 ×10−3 δ 5 ×10−18 32.5

Table 2: Best-fit parameter estimates of the heterogenous model (3.1) and the homogenous model
(3.3) obtained using the ordinary least-squares approach and the data set in Table 1.

Sensitivity analysis allows one to rank the effect of variation in the model parameters on
the division structured cell kinetics. Figure 5 shows sensitivity coefficients, ∂Nj(t;p

∗)/∂pk,
with respect to the components α0, α4, β4 of the parameter vector. The left figure shows
that the effect of variation in the division rate of the naive lymphocytes is amplified via a
succession of proliferation events as manifested by the relative size and position of the peaks
of the sensitivity curves. Indeed, the peak values become higher for cell compartments
with longer proliferation history. The sensitivity functions presented in Fig. 5 (right)
show the effect of variation in the birth (top) and death (bottom) rates of cells which
have undergone four divisions. For example, an increase in α4 leads to a reduction in N4

and to an increase in N5, N6, N7 and D. An increase of the death rate β4 decreases the
population sizes of cells at later generations.

4.3 Practical identifiability

The best-fit estimates of parameters βj , j = 0, 1, 2, 3, 6, 7, are close to zero, taking numer-
ical values ranging between 10−15 and 10−11 (hours−1). Biologically, these small values
would imply zero death rate of the proliferating cells with division number age from zero
to three, six and seven. The prediction of no death in cells, that have made six and more
divisions, might rather reflect that the data for corresponding populations are not infor-
mative enough for reliable estimation of the death rate (see discussion below). To clarify
whether setting the above parameters to zero is justified mathematically, we examined
the behavior of the least-squares function Φ as a function of pairwise combinations of
selected parameters. Note that visualization of the shape of the used objective function
in neighborhoods of the best-fit values of the model parameters allows one to analyze
the reliability of the computed best-fit. Moreover, our parameter estimation problem is
a constrained optimization problem since the components of vector p are required to be
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non-negative. In this case, the optimal values for some of the parameters can be attained
at the feasible region border. Figure 6a illustrates a plane-type behavior of Φ(β0, β1) so
that the smallest value of Φ is reached at (β0, β1) = (0, 0). The function Φ(α1, β1) with
contour plots displaying valley-type behavior, cf. Fig. 6b, indicates that the fitting is not
sensitive to the value of β1 within the examined range [0, 1.5 × 10−12]. The described
features are typical for the parameters βj , j = 0, 1, 2, 3, 6, 7. The above analysis suggests
that these parameters can be set equal to zero. If we treat them as fixed ad hoc and
perform the data fitting by varying the remaining 11 parameters, i.e., using the vector of
estimated parameters

p = [α0, α1, α2, . . . , α7, β4, β5, δ], (4.5)

the best-fit values of the objective function and the parameters are the same (within
machine accuracy) as in the case of the parameter vector with 17 components.

In contrast to the above case, (locally) elliptic contours and a ’parabolic’-type shape
of Φ(β4, β5), cf. Fig. 6c, suggest that the parameters β4 and β5 are well defined. Similar
behavior is observed for the rest of pairwise parameter combinations not involving the
above mentioned βj , e.g. Fig. 6d. Notice that the local behavior of the objective function
may not represent the ’global’ one, as follows by comparing Fig. 6e and its zoomed-out
version in Fig. 6f.

The CFSE data set presented in Table 1 does not ensure a reliable estimation of the
division and death rates for cells which have undergone more than 6 divisions. Indeed,
the best-fit value of α7 is very high, whereas β6 and β7 are close to zero. Because these
parameters affect only the kinetics of cells which have made 7 divisions, the unrealistic
values might be attributed to a relatively small contribution of the experimental data,
characterizing the number of cells having done 7 divisions, to the objective function. This
point is illustrated in Fig. 6 (bottom raw). For Φ(α6, α7), the contour plots are regular
circles in the (α6, α7)-plane in a small neighborhood of the computed minimum, while
Φ(α6, α7) does not change much when we consider a larger interval of variation of α7. The
corresponding minimum of Φ can be regarded as a ’weak’ one with respect to α7, implying
that a large change in the parameter value results in a small change in the value of the
objective function. A similar, although much less pronounced, feature is observed for α6

(not shown). This implies that the confidence in the best-fit parameter estimates deserves
further examination. Assessing the uncertainties in the parameter estimates is an essential
part of the quantitative characterization of T cell turnover.

5 Confidence of the parameter estimation

The general approach to characterize the reliability of parameter estimations is based upon
evaluating their confidence intervals (CIs). We have performed computational analysis of
the confidence intervals for the vector of 11 parameters (4.5) of the heterogenous model
(3.1) with βj = 0, j = 0, 1, 2, 3, 6, 7, as fixed ad hoc. There exist three major approaches
to evaluate CIs: the technique based on the variance-covariance matrix [4], the profile-
likelihood-based method [18] and two variants of the bootstrap method - parametric and
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non-parametric ones [7]. We apply these methods and assess their relative performance
by computing approximations to 95% confidence intervals for the estimated parameters.

In the following, Φ(p∗) stands for the optimized least-squares function, nd is the num-
ber of the experimental data used and np is the number of the estimated parameters. In
our case, nd = 36, since the data on day 3 are used as the initial values and are, therefore,
discarded from the fitting, and np = 11.

5.1 Variance-covariance analysis

The variance-covariance method is based upon a parabolic approximation of the objective
function around the best-fit parameter estimate p∗. The 100 · θ% confidence interval for
the parameter of interest, e.g. for pk, is approximated by the standard interval

CIpk
= [p∗k − σpk

z(θ, nf ), p∗k + σpk
z(θ, nf )], k = 1, 2, ..., np, (5.1)

where p∗k is the best-fit parameter estimate, σpk
is the standard deviation for pk and

z(θ, nf ) is the 100 · θ percentage point of the Student’s t-distribution with nf := nd − np

degrees of freedom. An estimate of the standard deviation of pk is computed as follows.
First we construct the covariance matrix

Ξ(p∗) =
2Φ(p∗)

nd − np
H−1(p∗) ∈ R

np×np , (5.2)

where H is the Hessian matrix,

H(p) :=
{ ∂

∂p

}{ ∂

∂p

}T
Φ(p) ∈ R

np×np , Hk,m(p) =
∂2

∂pk∂pm
Φ(p), (5.3)

with Hk,m being the (k, m)-th element of H. The standard deviation for the k-th element
of p is given by the corresponding diagonal element Ξk,k of the covariance matrix,

σk =
√

Ξk,k(p∗). (5.4)

The computed estimates of 95% CIs (z ≈ 2.06) for the best-fit parameters of model
(3.1) are presented in Table 3 and shown in Fig. 7. The intervals appear to be quite
narrow for all parameters except α6 and α7. The estimated CIs indicate that data sets
covering 7 divisions (J), such as presented in Table 1, are informative enough to estimate
reliably the proliferation and death rates of the first six (J − 1) successive divisions. Note
that the variance in the parameter estimates for the homogenous model is much narrower:
CIα ≈ [2.12, 2.14] × 10−2 and CIβ ≈ [3.30, 3.39] × 10−3.

The variance-covariance matrix can also be used to evaluate the joint confidence re-
gions for the elements of p∗. In addition, its off-diagonal elements provide insight into
the correlation between the best-fit estimates, cf. Table 4. Interestingly, the correlation is
particularly high between the turnover parameters of cells having made four and five divi-
sions. About 50% of the parameter combinations have quite low (below 0.2) correlation.
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p Best-fit Estimates of 95% confidence intervals
values variance-covariance profile likelihood bootstrap method

method method non-parametric parametric

α0 1.31 × 10−2 [0.79, 1.8] × 10−2 [0.94, 1.8] × 10−2 [0, 2.9] × 10−2 [0.51, 2.1] × 10−2

α1 3.10 ×10−2 [2.1, 4.1] × 10−2 [2.4, 4.0] × 10−2 [1.1, 5.1] × 10−2 [2.0, 4.2] × 10−2

α2 5.21 ×10−2 [4.1, 6.4] × 10−2 [4.4, 6.3] × 10−2 [3.1, 7.4] × 10−2 [3.8, 6.7] × 10−2

α3 4.95 ×10−2 [4.2, 5.7] × 10−2 [4.4, 5.6] × 10−2 [3.0, 6.9] × 10−2 [4.1, 5.8] × 10−2

α4 2.94 ×10−2 [2.1, 3.7] × 10−2 [2.4, 3.5] × 10−2 [1.4, 4.5] × 10−2 [2.3, 3.6] × 10−2

α5 7.28 ×10−3 [0.24, 1.2] × 10−2 [0.42, 1.3] × 10−2 [0, 2.2] × 10−2 [0.32, 1.1] × 10−2

α6 2.26 ×10−2 [0, 5.5] × 10−2 [0.09, 5.8] × 10−2 [0, 4.8] × 10−2

α7 1.37 [0, 6.8] [0.016,∞) [0, 2.7]
β4 7.12 × 10−3 [0, 1.8] × 10−2 [0, 1.51] × 10−2 [0, 2.6] × 10−2 [0, 1.7] × 10−2

β5 2.69 × 10−2 [1.2, 4.2] × 10−2 [1.0, 3.8] × 10−2 [0, 5.6] × 10−2 [1.4, 3.9] × 10−2

δ 4.52 × 10−2 [2.7, 6.4] × 10−2 [2.9, 6.0] × 10−2 [0, 9.4] × 10−2 [2.9, 6.1] × 10−2

Table 3: Computational estimates of 95% confidence intervals for the best-fit parameter values
of the heterogenous model (3.1) approximated by the variance-covariance, profile-likelihood and
bootstrap methods.

The accuracy of the confidence intervals computed by the variance-covariance method
depends on how consistent the local parabolic approximation of the objective function in
the vicinity of the best-fit parameters is. Other methods need to be applied to assess the
validity of the variance analysis.

5.2 Profile-likelihood-based method

Profile-likelihood method provides a method for computing the confidence intervals of the
maximum likelihood parameter estimates by following ’a global’ behaviour of the objective
function [18]. To compute approximations to the 95% CIs of the estimates, we proceed as
follows. For a parameter of interest, p∗k, we search for the interval [pmin

k , pmax
k ] of maximal

width and containing p∗k such that

| ln(L(p̃)) − ln(L(p∗))| ≤
1

2
X 2

1,0.95 whenever pk ∈ [pmin
k , pmax

k ]. (5.5)

In (5.5), L(p∗) stands for the likelihood function,

L(p̃) := max
p∈S(pk)

L(p), where S(pk) :=
{

[p1, p2, ..., pk−1, p, pk+1, ..., pnp ]|p fixed

}

,

and X 2
1,0.95 = 3.841 is the 0.95th quantile of the X 2-distribution for 1 degree of freedom.

The estimated 95% confidence intervals, cf. Table 3 and Fig. 7, were computed using
a numerical algorithm presented in [18]. The profile-based CIs, except CIα7

, are rather
close to the variance-covariance-based ones. The fact that they turned out to be somewhat
narrower for most of the parameters indicates that the objective function grows a bit faster
than the parabolic one.
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α0 α1 α2 α3 α4 α5 α6 α7 β4 β5

α1 -1.3e-1
α2 1.8e-1 -3.3e-1
α3 4.6e-1 2.0e-1 -1.6e-1
α4 -1.6e-1 -1.4e-1 -3.5e-1 -4.1e-1
α5 9.0e-2 8.0e-2 6.0e-2 1.0e-1 -2.6e-1
α6 9.0e-2 8.0e-2 6.0e-2 1.0e-1 -2.2e-1 9.8e-1
α7 3.0e-2 3.0e-2 2.0e-2 3.0e-2 -8.0e-2 3.6e-1 3.7e-1
β4 4.6e-1 3.1e-1 3.3e-1 5.5e-1 -8.8e-1 2.6e-1 2.3e-1 8.0e-2
β5 -1.6e-1 -1.2e-1 -3.0e-1 -3.5e-1 9.2e-1 -5.4e-1 -5.1e-1 -1.9e-1 -8.5e-1
δ 1.8e-1 1.0e-1 -1.6e-1 -4.0e-2 6.9e-1 -6.3e-1 -6.0e-1 -2.2e-1 -4.5e-1 8.3e-1

Table 4: Correlations between the best-fit parameter estimates of the heterogenous model (3.1)
computed from the variance-covariance matrix.

The profile-likelihood-based method does not provide an estimate of the upper limit
of the CIα7

. Its value tends to infinity as the iterations of the computational algorithm
continue. The reason is as follows. Using the relationship between the maximum likelihood
and least-squares objective function, the expression (5.5) is equivalent to

| ln(Φ(p̃)) − ln(Φ(p∗))| ≤
1

nd
X 2

1,0.95 whenever pk ∈ [pmin
k , pmax

k ], (5.6)

where
Φ(p̃) := min

p∈S(pk)
Φ(p).

Then, using ln(Φ(p∗)) ≈ 20.96, the final expression for computing the 95% CIpk
is equiv-

alent to
Φ(p̃) ∈ [Φ(p∗), 1.41 × 109] whenever pk ∈ [pmin

k , pmax
k ]. (5.7)

Figure 8 depicts the profile of Φ(p̃) with respect to the parameters α0 and α7, varying
within some ranges. For α0, the profile of Φ(p̃) shows a well balanced and symmetric
behavior within the computed confidence interval [αmin

0 , αmax
0 ]. We see that Φ(p̃) >

1.41 × 109 outside this interval. In contrast, the profile of Φ(p̃) is asymmetric for the
parameter α7 with the right tail staying below 1.41 × 109 as α7 → ∞. The latter is in
agreement with the behavior of the objective function Φ shown in Fig. 6f.

is also a term used in statistics to describe a variety of methods for computing summary
statistics using subsets of available data (jackknife), drawing randomly with replacement
from a set of data points (bootstrapping

5.3 Bootstrap method

The bootstrap technique is a computationally intensive method for estimating the mean
and standard error on the basis of samples generated from small data sets (say of size n) [8].
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The new data sets, being subsets of available data, are randomly drawn from an original
observations set of data points and fit as if they were independent observations. Therefore,
the method works by resampling randomly, for example with a uniform probability equal
to 1/n, the observed sample values to model the unknown population of observations. The
whole process of random samplings with replacement is repeated M times to generate M
data sets. For these data sets, one computes the best-fit parameter estimates p∗

m, m =
1, 2, ..., M , which provide an estimate of the ’true’ standard error by taking the standard
deviation of the M values of p∗

m. The standard interval

CIpk
= [E(p∗k) − σpk

z(θ), E(p∗k) + σpk
z(θ)], k = 1, 2, ..., np, (5.8)

approximates the 100 · θ bootstrap confidence interval. Here E(p∗k) and σpk
are the mean

and standard deviation, respectively, of the estimates of a parameter p∗k that are found
by fitting the bootstrap resamples of the original data and z(θ) is the 100 · θ-th percentile
of a normal deviate. The value z(0.95) ≈ 1.96 is used for approximating the 95% CI
in conjunction with a large number of resamplings M . We consider non-parametric and
parametric approaches for samples generation.

5.3.1 A non-parametric bootstrap

We used a non-parametric bootstrap approach [7] as follows. The original observations
are available for days 3 to 7 and characterize the numbers of live and dead cells. One
can treat the measurements of live and dead lymphocytes at a given time as independent,
whereas the distribution of the cells over the division number is a single entity which can
not be split. Therefore, we considered five measurement times (days 3 to 7) for the live
and dead cells as separate data points, which represent altogether the original sample set
of size 2nt, nt = 5. The resampled data sets were generated by choosing the measurement
times randomly from the original set using a uniform probability distribution.

Let the m-th resampling procedure select the following set of measurement days
{tN0 , tN1 , tN2 , tN3 , tN4 } for N and {tD0 , tD1 , tD2 , tD3 , tD4 } for D. The day set is further ordered
to ensure that tN0 ≤ tN1 ≤ tN2 ≤ tN3 ≤ tN4 and tD0 ≤ tD1 ≤ tD2 ≤ tD3 ≤ tD4 . The resamples
consisting of only one day of measurement, i.e., the measurement day represented nt times,
are discarded from analysis as being not informative. The bootstraping analysis involves
the following heuristics:

• construct samples of measurements by selecting the measurement times and corre-
sponding cell data at the sampled days;

• take the best-fit parameter vector as an initial guess for fitting the resampled data;

• compute the best-fit estimate p̃∗ using the objective function

Φ̃(p) =
4

∑

i=1

(

7
∑

j=0

(N
tNi
j − Nj(t

N
i ;p))2 + (DtDi − D(tDi ;p))2

)

, (5.9)
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where N
tNi
j and DtDi are the original data at the resampled times tNi and tDi , respec-

tively. If it happens that tD0 < tN0 , we compute the model predictions for Nj for all
times tDi for which tDi < tN0 , i = 0, . . ..

Repeating the above bootstrapping procedure M times, we compute a set of best-fit
vectors p̃∗

m, m = 1, . . . , M, for M bootstrap samples. The standard deviation of the
element pk of the vector p̃∗

m can be approximated from the above set in a usual way,

σpk,M
=

(

∑M
m=1 |p̃

∗
k,m − p̂∗k|

2

M − 1

)1/2
, where p̂∗k :=

∑M
m=1 p̃∗k,m

M
, (5.10)

cf. [7], equation (2.4). If
lim

M→∞
σpk,M

=: σpk

exists, then σpk
is the bootstrap estimate of the standard deviation for pk. In this case, a

standard bootstrap 95% CI for pk is given by

CIpk,M
= [p̂∗k − 1.96σpk,M

, p̂∗k + 1.96σpk,M
]. (5.11)

It is important that M is large enough to achieve convergence of σpk,m
as m → M .

However, as it was noticed in [7], the bootstrap is not generally reliable for small sample
sizes regardless of how many resamples M are used.

The computed 95% CIs for the parameters of the heterogenous model are presented in
Table 3 and Fig. 7. These results are based on M = 4000 resamples. The bootstrap CIs for
all parameters appear to be much broader than the ones predicted with variance-covariance
and profile-likelihood-based methods. As shown in Fig. 9, the standard deviation estimates
keep fluctuating, although to a different extent depending on particular parameter. A
slow convergence of the estimates can be seen for all the model parameters, except α6

and α7, and the evolution of σα0,M and σβ4,M provides two representative examples. Due
to the small size of the original data, the use of the large number of resamples does not
ensure a faster convergence and the sample estimates of σ were obtained with only 1 or 2
significant digits. The observed jumps in the evolution of σα6,M and σα7,M could be due
to the specific features of CFSE data set: (i) the contribution of the data on cells which
have undergone 6 and 7 divisions to the value of the objective function is much smaller
compared to the other cellular compartments; (ii) the parameters α6 and α7 influence fewer
solution components than other parameters and are, therefore, less well defined; (iii) the
non-parametric bootstrap approach allows very ”sparse” data sets, e.g. days {3, 3, 3, 3, 5},
which carry rather little information about the cell kinetics.

5.3.2 A parametric bootstrap

Applying a parametric variant of the bootstrap method to estimate the 95% CIs for the
best-fit values of the heterogenous model parameters, new data samples were generated
by perturbing the original data as follows,

Ñ i
j = N i

j + σ∗N (0, 1),

D̃i = Di + σ∗N (0, 1), i = 0, 1, . . . , 4, j = 0, 1, . . . , 7,
(5.12)
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where N i
j and Di are the data from Table 1 at time ti, N (0, 1) is a normally distributed

random variable with zero mean and variance equal to one, and σ∗ ≈ 5.9 × 103, cf. (4.3).
The maximum likelihood estimate of the variance σ∗2

is rather large compared to the
values of N i

7. Hence, the parametric resampling (5.12) can generate biologically improper
values of Ñ i

7, e.g. negative, sharply decreasing values. Such inconsistent data for Ñ i
7 were

filtered out by ignoring the sequences that do not increase monotonically. The above
difficulty indicates that the variance in the components of the observed state space vector
might not be equal. Rather, σ∗2

should be dependent on the number of divisions cells
have undergone and therefore, estimated separately.

For each perturbed data sample, we computed the bootstrap estimates of the best-fit
parameters by minimizing the following objective function

Φ̃(p) =
4

∑

i=1

(

7
∑

j=0

(Ñ i
j − Nj(ti;p))2 + (D̃i − D(ti;p))2

)

. (5.13)

Similar to the non-parametric bootstrap, we generated 4000 data samples. The boot-
strap set of the best-fit parameter values was used to calculate, by (5.10) and (5.11), the
standard deviation of the estimators to approximate the 95% CIs, cf. Table 3 and Fig. 7.
The estimated CIs are consistent with those given by the variance-covariance and profile-
likelihood methods. The convergence of all computed standard deviations is similar to
the ones shown in Fig. 9 (left), σα6,M and σα7,M evolve without jumps and converge to
smaller values than the ones estimated by the first two methods. We believe that this is
due to the filtering of the generated data Ñ7 as we discussed above.

5.4 Computational performance

The data fitting and confidence interval analysis of the parameters are computationally
intensive procedures. All computations were carried out using MATLAB 7.0 routines
on PC Pentium 4 CPU 2.26 GHz. It is instructive to analyze the relative performance
of the computational approaches to CIs analysis that we used. To this end we look at
the estimates of the CPU time required to perform the CIs analysis of the 11 estimated
parameters of the heterogenous model (3.1) by the three methods. The CPU time was
measured by the Matlab code cputime.

To solve the minimization problem, we used the Matlab code fminsearch based on
the Nelder-Mead simplex (direct search) method. The CPU time needed to find a solution
of one minimization problem for model (3.1), tmin, is given in Table 5 for different values
of the required accuracy defined by the fminsearch parameters TolFun and TolX. This
time practically does not depend on the requested accuracy since analytical solutions to
the model were used. However, it depends on how close the initial guess is to a local or
global minimum. Note that the lower bound of the given time intervals corresponds to
the initial parameter values close to the best-fit estimate (the first two significant digits
of the best-fit parameter values remain unchanged), and the upper bound corresponds to
a poor initial guess.
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Tolerances TolFun= 10−6 TolFun= 10−9 TolFun= 10−12

TolX= 10−6 TolX= 10−9 TolX= 10−12

CPU time 23-104 26-108 29-111

Table 5: The computational time tmin (seconds) required for solving one minimization problem
by the Nelder-Mead simplex method.

The variance-covariance matrix based technique. The CPU time required to cal-
culate CIs by the variance-covariance matrix based approach is determined by the time
tH needed to compute the Hessian matrix (5.3). For our problem, tH is about 6 seconds
and it does not depend on the requested accuracy since the matrix elements are computed
using analytical first- and second-order partial derivatives of the solution with respect to
the model parameters.

The profile-likelihood-based method. To compute the confidence intervals by the
profile-likelihood-based method, we used an algorithm described in [18], which is based on
a modified Newton-Raphson iteration to solve a system of equations that determines the
lower and upper bounds of a CI. One bound is usually located by 4-10 iterations, depending
on the requested accuracy and the quality of the starting point. The computational cost
of a single iteration is determined by the time needed to evaluate the first- and second-
order partial derivatives of the likelihood function with respect to the parameters being
optimized, i.e. by the time tH . Hence, the CPU time to compute CIs for 11 parameters
can be estimated as

tH ×
(

11
∑

i=1

2
∑

j=1

ni,j

)

, 4 ≤ ni,j ≤ 10,

where ni,1 and ni,2 specify the number of iterations needed to compute the low and upper
bounds of the CI for the i-th parameter, respectively.

The bootstrap approach. The computational cost of the bootstrap method (both
parametric and non-parametric) is determined by the following factors: (i) the total num-
ber M of resamples (M = 4000 in our case), (ii) the number of minimization runs,
sm, m = 1, . . . , M , which are needed to compute a satisfactory best-fit minimum (hope-
fully, a global one) for every generated data set, and (iii) the time required for solving
one minimization problem, tmin. Hence, the total CPU time can be evaluated by

tmin ×
M
∑

m=1

sm, sm ≥ 1.

Clearly, the bootstrap analysis becomes computationally highly expensive for a large num-
ber of resamplings M and/or when sm � 1. The latter takes place when, e.g., a model
parameter is poorly defined by the data used.
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Summary. Table 6 summarizes the CPU time needed to compute the confidence inter-
vals for the estimated parameters by the three methods we used. The methods can be
ranked in terms of their computational demands as follows: variance-covariance technique
is superior to the profile-likelihood method which is (much) faster than the bootstrap.
The time needed for the bootstrap approach is about 25 to 123 hours, even in a fa-
vorable case when the minimization problem is solved only once for each data sample,
i.e., sm = 1, m = 1, . . . , M .

Method Variance-covariance Profile-likelihood Bootstrap
matrix approach method method

CPU tH tH × (
∑11

i=1

∑2
j=1 ni,j) tmin ×

∑M
m=1 sm

time 6 528 − 1320 92000 − 444000
case sm = 1, m = 1, . . . , M

Table 6: The total computational time (seconds) required for evaluating 95% confidence intervals
for the estimated parameters of the heterogenous model (3.1) by the three methods.

6 Kendall model vs Smith-Martin model on in vitro and in

vivo data

The heterogenous compartmental model (3.1) for cell kinetics was applied to CFSE data
analysis generated by in vitro assays. To understand limitations of this model in a broader
context, we compare its performance with a version of the Smith-Martin (SM) model of
cell kinetics by considering both our in vitro data (Table 1) and the in vivo data presented
in [9].

6.1 A version of Smith-Martin model

The Smith-Martin model [16] is a well-known biological model for cell data analysis, in
which the cell cycle stages are lumped into two states: the first state (A) corresponds to
the G1 phase of the cell cycle and the second state (B) represents the S −G2 −M phases
of the cycle. The progression through the cell cycle is assumed to have stochastic and
deterministic components: the recruitment of cells from the A state into B, respectively,
a fixed-time progression through the B state. In recent studies [6,9], a delay-type version
of this model was proposed, which describes the rate of change of the populations of T
lymphocytes in the A and B states, Aj(t), respectively Bj(t), that have undergone j
divisions,

dAj

dt (t) = 2λAj−1(t − ∆)e−dB∆ − (λ + dA)Aj(t), j = 1, . . . ,∞,

Bj(t) = λ
∫ ∆
0 Aj(t − s)e−dBsds, j = 1, . . . ,∞.

(6.1)
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The parameters of the model characterize the division (λ) and death (dA, dB) rates and a
time lag (∆) of transit through the B state, see [6,9] for details. In [9], the model variables
Aj(t) + Bj(t) were fitted to in vivo data on proliferation of P-14 Tg naive CD8 T cells
after adoptive transfer into an irradiated host, taken from [13] and summarized in Table 3
in [9]. A partly heterogenous version of the above model, in which the division and death
rates of naive cells are different from those of the divided cells, was studied in [6] on in
vitro data from [10].

6.2 In vitro cell growth

We used the Smith-Martin model (6.1) to assimilate the cell kinetics data presented in
Table 1. The fitting procedure was the same as for the heterogenous compartmental model.

The best-fit solutions of the both models together with the experimental data for the
total number of lymphocytes over all divisions, the mean value and the variance of the
number of divisions lymphocytes have undergone are presented in Fig. 10. The cell growth
pattern, which decelerates with time, indicates that the system is not in the phase of the
’steady state of exponential growth’. Whereas the heterogenous model is consistent with
the data (the concave behavior), the solution of the SM model deviates quite substantially
displaying a convex pattern of increase in the total cell number. Analogous can be seen for
the predicted evolution of the mean value of cell population divisions for the SM model:
it is a linear rather than a logistic-type behavior. The kinetics of the variance in the mean
division number is a problem for both models, although the heterogenous model gives a
much closer fit to the data.

The best-fit parameter estimates of the homogenous SM model are as follows: A0(0) ≈
6.73 × 104, λ ≈ 3.62 × 10−2, dA ≈ 8.28 × 10−3, dB ≈ 0, ∆ ≈ 13.77. The objective
function value is Φ(p∗) ≈ 3.82 × 1010. These estimates imply that there is little death in
both states of the cell cycle. The numbers suggest that the average division time of cells
(we follow the notation in [9]) is T = 1/λ + ∆ ≈ 41.4 (hours), whereas the growth rate
is 1/T ≈ 2.42 × 10−2. These values are somewhat different from those predicted by the
heterogenous and homogenous versions of the Kendall’s model. The predicted fraction of
responding cells 33.6% is close to our estimate 38%. To characterize the information loss
of the SM model for the given data set, we estimated the Akaike index. Its value being
about 989 is higher than that of the heterogenous (732) and homogenous (799) versions of
the Kendall model. Notice that the data D(t) were not used in the parameter estimation
for the last two models.

Overall, the above implies that the Kendall model performs better on the in vitro data
which represent saturating growth of cell populations.

6.3 In vivo cell growth

The cell growth kinetics in vivo is characterized by data from [13] summarized in Table 3
in [9]. This data set was used to estimate the parameters of the heterogenous compart-
mental model. The best-fit results are summarized in Fig. 11. As a reference solution,
we also present the fitting results obtained with the Smith-Martin model (6.1), for which
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the minimized objective function takes a slightly bigger value, Φ(p∗) ≈ 3.90 × 109 versus
Φ(p∗) ≈ 2.38 × 109 for the heterogeneous model. The heterogenous model is consis-
tent with the data on the total numbers of life lymphocytes and responding precursors,
cf. Fig. 11a. The evolution of the mean number of cell divisions and its variance deviates
from the observed numbers, especially at the earlier phase of cell proliferation, cf. Fig. 11b.
According to the heterogenous model, the division rate is not uniform but depends on the
proliferation history, cf. Fig. 11c. The death rate is close to zero, except the naive cell
compartment, cf. Fig. 11d. The proliferation rate estimate by the SM model, 1/T , is close
to that of the heterogenous model for naive cells and the cells which have undergone 1
and 2 divisions but deviates essentially for cells generated later, cf. Fig 11c.

The CIs for the optimized parameters were estimated by the variance-covariance ma-
trix method and the prolife-likelihood approach. Whereas the ranges estimated using the
two methods appear to be close to each other for the Smith-Martin model, the correspond-
ing CI estimates differ for the heterogenous model. The fact that intervals predicted by
the variance-covariance technique are larger than those by the profile-likelihood method,
suggests that the objective function grows faster than its parabolic approximation. The
Akaike measures of the information loss are µcAIC ≈ 551 and µcAIC ≈ 631 for the het-
erogenous and SM models, respectively.

6.4 Robustness to variations in data set

We examined the robustness of the parameter estimates with respect to the addition or
deletion of observations at the last measurement time. For a heterogenous model, the
effect of the perturbation is localized towards the older generation cell compartments. For
example, the deletion of day 7 data (last raw in Table 1) from the least-squares function
fitting led to the following changes in the best-fit values: five out of 11 identified parameters
varied within 1 − 10%, i.e. the parameters (αj , j = 1, . . . , 4, and δ), and the rests varied
from 14% to 47%.

For comparison, we did a similar analysis of the version of the Smith-Martin model
from [6] that considers the division and death rates of cells which have undergone at least
one division as being independent of further divisions. In this work, a set of in vitro data
on CD4 T cell proliferation stimulated with anti-CD3 antibodies [10], covering the range
from 60 through 96 hours, was analyzed. If one extends the data set used for parameter
estimation in [6] by adding the data at t = 96 hours (this measurement was not used
for the parameter estimation of the Smith-Martin model in [6]), then the change in the
best-fit parameter values is more substantial, ranging from 4% to 550%.

7 Conclusions

We have presented a comprehensive computational analysis of the human lymphocyte
kinetics from CFSE data. The data set we used is typical for CFSE labelling assay and
includes the total number of live and dead (but not disintegrated) cells. We applied a
heterogenous compartmental model, first proposed by Kendall for cell cycle progression
modelling, to estimate, following the maximum likelihood approach, the proliferation and
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death rates of PHA-stimulated T cells in vitro. The model predicts that the turnover rates
are division number dependent. Similar analysis of in vivo data on the dynamics of P-14
tg CTL after adoptive transfer into irradiated mice [13] confirmed our findings. Therefore,
the use of homogenous models for the analysis of cell kinetics deserves a caution.

Our experience indicates that a reliable estimation of the heterogenous model param-
eters is limited to those cell compartments which have undergone the number of division
cycles which is two divisions less then the maximum number of divisions followed in the
CFSE assay. For example, the parameter, characterizing the division rate of cells which
have undergone the maximal number of divisions (nmax), is exceptional in the sense that
it can not be identified reliably from finite series of data covering the division range from
0 to nmax.

For the first time, three major methods of the analysis of the confidence in the best-fit
parameter estimates: the variance-covariance matrix based approach, the profile-likelihood
based method and the bootstrap (non-parametric and parametric) method, were compared
in terms of their consistency and computational performance. The presented results show
that the three techniques give rather close estimates of the 95% confidence intervals of the
identified parameters of the considered heterogenous model.

The non-parametric bootstrap approach gave larger confidence intervals compared to
the other methods. We explain this discrepancy by the sparsity of the original data,
provided that measurements are made at few time points, many resampled data are char-
acterized by repetition of the same data. The least computationally demanding method
of the CIs analysis is the variance-covariance method. However, the underlying parabolic
approximation of the objective function might not always be an appropriate one. The
profile-likelihood-based approach seems to be the technique which provides a reasonable
balance between the accuracy and computational cost.

We showed that the information-theoretic criteria, which take into account the accu-
racy (bias) of the data fitting and the complexity of the mathematical model, provide
a rigorous basis for ranking various models. We computed the corrected Akaike index
for the models considered in the present study: the heterogenous and homogenous com-
partmental models as variants of the Kendall model and a variant of the homogenous
Smith-Martin model, to assess their distance from the ’full truth’ model of the given data.
The heterogenous Kendall model gave the least information loss for the type of data we
considered.

The computational methodology implemented in this study can be further tailored
to the needs of practical research on cell kinetics which uses CFSE labelling. Together
with appropriate mathematical models, it should lead to a better understanding of the
parameters of lymphocyte responsiveness under normal and pathological conditions.
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Figure 1: Proliferative capacity (◦) of the human peripheral blood mononuclear cell population
following stimulation with PHA in vitro. It characterizes the average number of daughter cells
generated per responding precursor by time t. Estimated from Table 1 data under the assumption
of no cell death.
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Figure 2: Experimental data (◦) and the best-fit solutions of the heterogenous (solid lines) model
(3.1) and the homogenous (dashed lines) model (3.3).
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Figure 3: The kinetics of the PBMC population growth. Left: The total number of live lympho-
cytes N over all divisions and the number of precursors P , that would have generated the current
lymphocyte population in the absence of death, estimated from the data in Table 1 (◦) and pre-
dicted by the heterogenous (solid line) model (3.1) and the homogenous (dashed line) model (3.3)
for the best-fit parameter values. Right: The behavior of the mean division number µ (◦) and its
variance σ2 (∗) suggested by the data. The solid and dashed curves correspond to µ(t) and σ2(t)
computed using the best-fit solutions of the heterogeneous and homogeneous models, respectively.
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Figure 6: The behavior of the least-squares objective function Φ (with contour plots) in the
neighborhood of the computed minimum (•) for various pairs of the model parameters. The other
parameters are kept fixed at their best-fit values. A parabolic shape (figures (c)-(d)) indicates a
locally well-defined minimum. The plane-type behavior (a) suggests that the extremum is attained
at the border of the feasible region (non-negative parameter values domain), whereas valley-type
contours (figures (b) and (f)) indicate a poorly defined minimum.

29



0

0.02

0.04

0.06

0.08

α
0

α
1

α
2

α
3

α
4 α

5
α

6 δ
0

0.02

0.04

0.06

β
0

β
1

β
2

β
3

β
4

β
5

β
6 β

7

Figure 7: Comparison of the approximations to 95% confidence intervals for the best-fit parameter
values of the heterogenous model computed by three methods: the variance-covariance method (�),
the profile-likelihood-based method (∗) and two versions of the bootstrap method - non-parametric
(×) and parametric (◦) approaches. The best-fit parameter values are marked by (•).

0.01 0.012 0.014 0.016 0.018
1.26

1.3

1.34

1.4

x 10
9

α
0

Φ(p)
~

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

1.26

1.3

1.34

1.4

x 10
9

α
7

~Φ(p)

Figure 8: The behavior of the minimized least-squares function Φ(p̃) with respect to the naive
cell division rate α0 (left) and with respect to the division rate of cells which have undergone
7 divisions, α7 (right). The parameters α0 and α7 vary within the computed 95% confidence
interval, respectively, the interval [αmin

7
, 105]. The profile of Φ(p̃) sheds light on the difficulty with

computing the upper limit of the confidence interval for α7. The best-fit values of α0 and α7 are
denoted by (•).

30



0 1000 2000 3000 4000
7.6

8

8.4

x 10
−3

0 1000 2000 3000 4000

9

9.5

x 10
−3

number of samples

σβ
4
,M

σα
0
,M

0 1000 2000 3000 4000
0.04

0.06

0.08

0.1

0 1000 2000 3000 4000
5

10

15

number of samples

σα
6
,M

σα
7
,M

Figure 9: Evolution of the bootstrap estimates for the standard deviations σα0,M , σβ4,M (left) and
σα6,M , σα7,M (right) versus the number of resamples M .
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Figure 10: Performance of the heterogenous Kendall type model (3.1) and the homogenous Smith-
Martin model (6.1) on analysis of the in vitro data in Table 1. Left: The total number of live
lymphocytes N over all divisions: data (◦) and the best-fit approximations provided by the het-
erogenous model (solid line) and the Smith-Martin model (dashed line). Right: The behavior of the
mean division number µ (◦) and its variance σ2 (∗) suggested by the data. The solid and dashed
curves correspond to µ(t) and σ2(t) computed using the best-fit solutions of the heterogeneous and
Smith-Martin models, respectively.
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Figure 11: Analysis of in vivo mouse data on transgenic CD8 T cell growth following adoptive
transfer into irradiated hosts given in [9]. The performance of the heterogenous model (3.1) and
the homogenous Smith-Martin model (6.1) is analyzed. (a) The kinetics of the total number of
live lymphocytes N over all divisions and the number of precursors P that would have generated
the current lymphocyte population in the absence of death: estimated from the data (◦) and
predicted by the solutions of the heterogenous (solid curves) and Smith-Martin (dashed curves)
models with the best-fit parameters. (b) The behavior of the mean division number µ (◦) and its
variance σ2 (∗) suggested by the data. The solid and dashed curves correspond to µ(t) and σ2(t)
computed using the best-fit solutions of the heterogeneous and Smith-Martin models, respectively.
(c)-(d) The best-fit parameter estimates of the heterogenous model (•) and the best-fit values of
parameters 1/T, dA and dB of the Smith-Martin model (indicated by dashed curves, dA ≈ dB ≈ 0).
Approximations to 95% confidence intervals for the best-fit parameters of the heterogeneous model
computed by the variance-covariance method (�) and by the profile-likelihood-based method (∗)
are shown. For the Smith-Martin model, the 95% confidence intervals for 1/T computed by these
two methods agree closely (dot-dashed curves).
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