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Abstract

Monads and algebraic effects are two alternative approaches for
expressing purely functional side-effects. While the two approaches
have been well-studied, there is still much confusion about their
relative merits and expressiveness, especially when it comes to their
comparative modularity. This paper clarifies the connection between
the two approaches.

In this paper we introduce the notion of modular algebraic effects,
and show how these correspond to a specific class of monad trans-
formers. In particular, we show that every modular algebraic effect
gives rise to a monad transformer. Moreover, every monad trans-
former for algebraic operations gives rise to a modular effect handler.
Finally, we illustrate the common ground of both approaches with
an algebraic reformulation of callCC.
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Abstract
Monads and algebraic effects are two alternative approaches for
expressing purely functional side-effects. While the two approaches
have been well-studied, there is still much confusion about their
relative merits and expressiveness, especially when it comes to their
comparative modularity. This paper clarifies the connection between
the two approaches.

In this paper we introduce the notion of modular algebraic
effects, and show how these correspond to a specific class of
monad transformers. In particular, we show that every modular
algebraic effect gives rise to a monad transformer. Moreover, every
monad transformer for algebraic operations gives rise to a modular
effect handler. Finally, we illustrate the common ground of both
approaches with an algebraic reformulation of callCC.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications – Applicative (func-
tional) languages

Keywords Handlers, Effects, Monads, Transformers, Haskell

1. Introduction
For decades monads [28, 42] have dominated the scene of functional
programming with effects, and the recent popularisation of algebraic
effects & handlers [4, 9, 22, 24, 34] promises to change the
landscape. However, with rapid change also comes confusion,
and practitioners have been left uncertain about which of the
two competing approaches to choose. In this paper we show that
although the approaches differ, what binds them together is greater
than what drives them apart.

When one wants to obtain a combination of different effects, it
is desirable to use a modular approach, in which each effect is given
semantics separately. This allows for the construction of complex
custom effects from simple off-the-shelf building blocks. In the
monadic approach the most popular way to achieve modularity
is with monad transformers [25]. Monad transformers extend an
arbitrary monad to a new monad that adds an effect while at the
same time ensuring that the effects provided by the original monads

[Copyright notice will appear here once ’preprint’ option is removed.]

are available. By stacking several monad transformers in a particular
order, one obtains the desired combination. In the algebraic effects
approach modularity is achieved in two stages. First, the syntax of
all operations involved in the desired effect is combined. Then, the
syntax corresponding to each effect is given semantics by means
of a handler. Since each handler only knows about the part of the
syntax of the effect it is handling, a modular approach to algebraic
effects must provide a way of handling unknown syntax.

Both monad transformers and modular algebraic effects address
the same problem: to modularly combine purely functional defi-
nitions of explicit side-effects. Yet, it is very much an open ques-
tion how the two approaches relate to each other and whether one
approach is strictly superior. The differences between the two ap-
proaches makes it difficult to directly compare the two methodolo-
gies, whether in terms of their expressivity, modularity, algebraicity,
or efficiency. Monad transformers have a reputation for being more
expressive and efficient, while algebraic effects are said to have the
upper hand when it comes to the modular composition of effects
and algebraic reasoning properties. In order to make a comparison
we show how, subject to certain conditions, each methodology can
be expressed in terms of the other. These conditions also highlight
the limitations of one approach with respect to the other. As we will
see, the situation is nuanced, and it is often possible to find a middle
ground where both approaches can offer their benefits.

This paper focuses only on the essential expressive power
that each approach provides; other important properties, such as
performance, ease of use and boilerplate automation, are beyond
our scope. To study expressivity, we formulate a minimal Haskell
implementation of both approaches. Similar to core calculi, these do
not constitute new practical systems, but only capture the property of
interest (expressivity) in existing practical systems, and abstract over
all other aspects. While monad transformers are a mature technology,
modular algebraic effects are in their infancy and there is no general
agreement on how they should be implemented. A contribution
of this paper is to provide a simple characterisation of modular
handlers with which we intend to capture the essence of the available
implementations. In this way, we aim to provide general insights
that can be applied to everyone’s favourite Haskell library.

Our specific contributions are:

1. We characterise modular handlers as type constructors that form
a parametric family of Eilenberg-Moore algebras.

2. We compare the expressiveness of monad transformers and
modular algebraic effects, showing that:

(a) every algebraic effect signature gives rise to a monad sub-
class and every associated modular effect handler gives rise
to a monad transformer that instantiates the class, and
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(b) every monad subclass with only algebraic operations gives
rise to an algebraic effect signature and every monad trans-
former instantiating the class gives rise to a modular effect
handler for the signature.

These transformations are semantics-preserving.

3. We show that callCC, an operation that is well-known to be
expressible in terms of a monad transformer, can be reformulated
in terms of algebraic operations.

Paper Structure The rest of this paper is structured as follows. We
start with an introduction to monad transformers and modular alge-
braic effects in Section 2, where we work with examples common to
both to help compare and contrast the approaches. Having explained
the methodologies, we show in Section 3 that it is possible to ex-
press modular algebraic effects as monad transformers. In Section 4,
we then show that a restricted class of monad transformers can be
turned into modular algebraic effects. In Section 5 we show how
to give semantics to callCC in terms of algebraic operations and
modular handlers, Finally, we relate our work to the rest of the field
in Section 6 before concluding in Section 7.

2. Background and Overview
In this section we give an overview of monad transformers and effect
handlers. We assume familiarity with monads, and introduce them
here to fix notation.

2.1 Monads
A monad is a type constructor m equipped with two functions
return :: a→ m a and join :: m (m a)→ m a, subject to three laws:

join◦ return = id (1)
join◦ fmap return = id (2)

join◦ join = join◦ fmap join (3)

Intuitively, return puts a value into a monadic context, and join
collapses a nested monadic context. The first two laws state that
nesting a context with return followed by collapsing with join
changes nothing, and the third law ensures that the order in which
multiple nested contexts are collapsed is irrelevant.

In Haskell, monads are defined in terms of return and (>>=),
pronounced “bind”, in the following type class:

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

Valid definitions of monads must adhere to the monad laws, where

mx>>= f = join (fmap f mx)

The result of mx>>= f is to execute mx and feed its result to f . This
can be implemented by applying f within the context mx, and then
collapsing the nested context with join.

Using a type class restricts every type to (at most) one monadic
interpretation, the one given by the Monad class. For instance, state
can be encapsulated by the following type:

newtype State s a = State {runState :: s→ (a,s)}
This is a monad under the following type class instance:

instance Monad (State s) where
return x = State (λ s→ (x,s))
State p>>= k = State (λ s→ let (x,s′) = p s in

runState (k x) s′)

This monad facilitates the use of a state of type s that is threaded
around from one monadic computation to the next, where it might be

accessed or replaced with a different one. There are two associated
functions, get and put:

get :: State s s
get = State (λ s→ (s,s))
put :: s→ State s ()
put s = State (λ → ((),s))

The get operation creates a computation that returns the state that it is
given, leaving the state unchanged, while put s creates a computation
that ignores the state that it is given and changes the state to s.

Monads often come with run functions that are responsible
for extracting values from monadic computations. One example
is the function runState :: State s a → s → (s,a) defined above.
For the sake of abstraction, we prefer not to work directly with
implementations of monads to extract the final results, but we rely
on such functions, even though some of them, like runState, simply
reveal the implementation.

2.2 Monad Transformers
Monad transformers allow monads to be extended with additional
functionality. This is done by providing a function that lifts one
monad into another.

Lifting The Trans type class is the well-known Haskell interface
for monad transformers.

class Trans t where
lift :: Monad m⇒ m a→ t m a

This interface states that a transformer t provides a lift function that
lifts a computation in any monad m to a corresponding computation
in the transformed monad t m. An implicit requirement for instances
of this class is that whenever m is a monad, t m should be a
monad. Moreover, lift should be a monad (homo)-morphism, where
it respects the following properties:

lift ◦ return = return (4)
lift ◦ join = join◦ lift ◦ fmap lift (5)

This states that lifting preserves the structure of return and join from
one monad to another.

As an example, the transformer StateT adds State-like function-
ality to an underlying monad.

newtype StateT s m a = StateT {runStateT :: s→ m (a,s)}
A computation is lifted into StateT s as follows:

instance Trans (StateT s) where
lift m = StateT (λ s→ m>>=λa→ return (a,s))

We must also provide an instance Monad (t m) when we have
Monad m and Trans t. For StateT s, this gives us:

instance Monad m⇒Monad (StateT s m) where
return x = StateT (λ s→ return (x,s))
StateT p>>= k = StateT (λ s→ do (x,s′)← p s

runStateT (k x) s′)

This definition is almost identical to its counterpart for State,
except that we are now careful to thread the monadic effects of
m throughout the computation.

Operations The Trans type class provides only a part of a trans-
former’s interface. We also expect functions that allow access to the
interesting aspects of the monadic behaviour that has been added.
Although it is possible to give these functions in terms of a concrete
instance, it is better practice to provide a type class that encapsu-
lates the key operations, along with some laws that pin down their
semantics.
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In the case of StateT s, we should anticipate functions similar
to get and put from State s. Since we do not want to rely on their
implementation, we can instead consider the properties that these
operations satisfy [12].

get>>=put = id
put s>>put s′ = put s′

get>>get = get
put s>>get = put s>> return s

Thinking about operations in terms of properties rather than imple-
mentations calls for us to incorporate get and put into a typeclass
that embodies stateful computations.

class Monad m⇒MonadState s m | m→ s where
get :: m s
put :: s→ m ()

Legal instances of this class adhere to the laws above. Without them,
there is no way to arbitrate between different implementations.

With this in place, we can give an instance not only for State s,
using the definitions we introduced before, but also for StateT s m:

instance Monad m⇒MonadState s (StateT s m) where
get = StateT (λ s → return (s,s))
put s = StateT (λ → return ((),s))

These definitions are very similar to the counterparts for State s,
differing only by the fact that pure values have now been wrapped
within a monadic context.

We can now write programs that leave the type they operate on
abstract, allowing programs like incr to work both for State s and
StateT s m for any monad m.

incr :: MonadState Int m⇒ m ()
incr = get>>=put ◦ succ

This small program gets an integer value from the state, and puts
back a value that is its successor.

More generally, for a monadic X, the operations added by a
transformer are captured in a so-called monad subclass MonadX.

class Monad m⇒MonadX m where
op1 :: . . . → m T1
. . .
opn :: . . . → m Tn

Again, we would expect there to be laws associated to this class.

Composition Monad transformers compose by embedding one
transformer into another. If we suppose that there are two transform-
ers T1 and T2 with associated effects given by the classes MonadX1
and MonadX2, then for any monad m, we can have either T1 (T2 m)
or T2 (T1 m) depending on the order the effects should be inter-
preted.

The transformer approach requires there to be a monad at the
bottom of the stack of transformers. It is convenient to use the
identity monad Id for this purpose.

newtype Id a = Id {runId :: a}
instance Monad Id where

return = Id
Id x>>= f = f x

The bind operation for this monad is essentially function application.
As an alternative to giving the type of a computation di-

rectly in terms of the composition of transformers, we can in-
stead work with class constraints: a computation with the type
(MonadX1 m,MonadX2 m) ⇒ m a could be satisfied by either

T1 (T2 Id), or T2 (T1 Id), thus allowing us to interpret one fragment
of code in whichever way we choose.

For instance, consider the MonadFail class, which captures the
notion of failing computations.

class Monad m⇒MonadFail m where
fail :: m a

Here we expect only one law to hold, which expresses that no
computation is performed after failure:

fail>>= f = fail

The law is satisfied by the familiar Maybe type:

data Maybe a = Nothing | Just a
instance Monad Maybe where

return = Just
Nothing>>= f = Nothing
Just x >>= f = f x

instance MonadFail Maybe where
fail = Nothing

This is clearly a monad, where Just provides the backbone for
successful computations. The operation for fail is provided by
Nothing, which is a left zero of (>>=).

The corresponding transformer is given by MaybeT , where
failures are pushed into an underlying monad by wrapping pure
values with Maybe.

newtype MaybeT m a = MaybeT {runMaybeT :: m (Maybe a)}
instance Monad m⇒Monad (MaybeT m) where

return x = MaybeT (return (Just x))
MaybeT mmx>>= f = MaybeT (do

mx← mmx
case mx of

Nothing→ return Nothing
Just x → runMaybeT (f x))

instance Monad m⇒MonadFail (MaybeT m) where
fail = MaybeT (return Nothing)

instance Trans MaybeT where
lift mx = MaybeT (fmap Just mx)

To lift a computation, we add Just to successful results within the
monad, and return Nothing in the case of failure.

Having defined both MonadState and MonadFail, we can ex-
press computations that make use of the two effects. Consider the
following example:

prog :: (MonadFail m,MonadState Int m)⇒ m ()
prog = incr>> fail>> incr

By keeping the type of this computation abstract, we are free
to choose the exact semantics at the point of application. For
instance, we might want to evaluate prog as a computation of
type Maybe ((), Int) that returns the state only when there are no
exceptions, and Nothing otherwise. To do so, we must show how
a monad m that supports failure can be promoted through a StateT
transformer:

instance MonadFail m⇒MonadFail (StateT s m) where
fail = lift fail

With this machinery in place, we can execute prog with its type
specialised to StateT Int (MaybeT Id) ().

> (runId ◦ runMaybeT ◦flip runStateT 0) prog
Nothing
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Since prog fails during the computation no state is returned, and we
are left only with the fact that an error occurred.

If we are interested in knowing what the state is even when an
error occurs, then we can change the type of the program. Our goal
is to get a result of type (Maybe (), Int). To achieve this, we can
specialise our program to the type MaybeT (StateT Int Id) (), and in
order to do so, we must show how a stateful monad can be lifted
through MaybeT .

instance MonadState s m⇒MonadState s (MaybeT m) where
get = lift get
put = lift ◦put

Now we get a different result:

> (runId ◦flip runStateT 0◦ runMaybeT) prog
(Nothing,1)

This gives back the state just before the occurrence of the fail.
Notice that the final computation is the result of running the vari-

ous transformers one after the other, each interpreting another layer
of effects. These functions are an essential part of the interpretation,
and often have the general form run :: Monad m⇒ T m A→ m B.

The two instances above show a characteristic of the monad
transformer approach: the subclass of operations of the underlying
monad has to be lifted to the transformed monad. For certain
transformers, there is a canonical way of lifting operations [16, 18],
but in general there might be many different ways in which a given
operation can be lifted, and the choice is dependent on the expected
semantics. Therefore, one usually needs to manually write one
instance that implements the lifting of operations for each monad
transformer combination (as was done above).

2.3 Algebraic Effects
The algebraic-effect approach is organized in a quite different way.
It distinguishes between the syntax and the semantics of effects.

Syntax The syntax of an effect consists of the signatures of the
supported operations. These come in the form of a functor sig. For
the state effect we have the functor STATE s:

data STATE s k = GET (s→ k) | PUT s (()→ k)

The two constructors GET and PUT denote operations for reading
and writing the state, respectively. Each constructor has a field that
holds the continuation of the operation, s→ k for GET and ()→ k
for PUT. Here, the type parameter k is a place-holder for the type of
computations. It should only be used in the position of continuations.

The free monad is the recursive structure that sequentially
composes zero or more operations of the given signature. Its basic
definition in Haskell is:

data Free sig a = Return a | Op (sig (Free sig a))

Here, Return expresses a trivial computation over a signature sig
that performs no operation and immediately returns a value of type a.
In contrast, Op denotes a computation that performs one operation
whose continuation consists again of zero or more operations. One
can think of this construction as a syntax tree whose node shape is
determined by sig. The result of return x is a leaf, and (>>=) grows
the syntax tree of operations at its leaves.

instance Functor f ⇒Monad (Free f ) where
return x = Return x
Return x>>= f = f x
Op op >>= f = Op (fmap (>>=f ) op)

Putting syntax together using these constructs directly can be a little
cumbersome. For instance, reproducing the program incr in this
style would require the following code:

incr′ :: Free (STATE Int) ()
incr′ = Op (GET (λ s→ Op (PUT (s+1) Return)))

This can be somewhat alleviated by creating smart constructors,
where return has been used for the continuation parameter.

get′ :: Free (STATE s) s
get′ = Op (GET return)

put′ :: s→ Free (STATE s) ()
put′ s = Op (PUT s return)

Semantics The most straightforward way to interpret—or handle—
the Free f syntax of effects is by means of a fold over the structure.

fold :: Functor sig⇒ (a→ b)→ (sig b→ b)→ (Free sig a→ b)
fold gen alg (Return x) = gen x
fold gen alg (Op op) = alg (fmap (fold gen alg) op)

The two key parameters to fold are the generator that interprets a
values into the carrier b, and the sig-algebra that explains how to
interpret the signature’s operations. We call the triple 〈b,gen,alg〉 a
handler for the signature sig.

For instance, 〈s→ a,genS,algS〉 is a handler for Free (STATE s) a
terms:

genS :: a→ (s→ a)
genS x = λ s→ x
algS :: (STATE s) (s→ a)→ (s→ a)
algS (GET k) = λ s → k s s
algS (PUT s k) = λ → k () s

This handler behaves in the expected way, where the following
program increments and returns the state.

> fold genS algS (incr′>>get′) 5
6

2.4 Modular Algebraic Effects
The modular composition of effects does not follow automatically
from the algebraic effects approach. We need to impose additional
structure that allows us to compose both signatures and handlers.

Modular Signatures Signatures compose naturally with the func-
tor coproduct:

data (sig1 + sig2) a = Inl (sig1 a) | Inr (sig2 a)

The VOID functor is the neutral element of this functor coproduct,
and is expressed as a type with no constructors.

data VOID k

Any signature sig is isomorphic to sig+VOID. This means that VOID
serves as a nice base case with the trivial handler:

runVOID :: Free VOID a→ a
runVOID = fold genV algV where

genV :: a→ a
genV = id
algV :: VOID a→ a
algV =⊥

Modular Handlers There are different ways to compose handlers.
Firstly, if both handlers agree on the same carrier type b and the
same generator gen, then the coproduct mediator can be used:

(O) :: (sig1 a→ b)→ (sig2 a→ b)→ ((sig1 + sig2) a→ b)
(alg1Oalg2) (Inl op) = alg1 op
(alg1Oalg2) (Inr op) = alg2 op
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For algebras it is always the case that a = b. Depending on the
operation that is present, the appropriate algebra is applied.

However, this coincidence of carrier type and generator is rather
exceptional, and in this paper we focus on a different composition
scheme that occurs more commonly in the literature. The idea is
to run one handler after the other, first interpreting SIG1 without
touching SIG2 and then interpreting the latter.

Free (SIG1 +SIG2 +VOID) A1 { fold gen1 alg1 }
→ H1 { run1 }
→ Free (SIG2 +VOID) A2 { fold gen2 alg2 }
→ H2 { run2 }
→ Free VOID A3 { runVOID }
→ A3

In this scheme, run1 denotes a run function that mediates between
the carrier type H1 of the first fold and the new computation
type Free (SIG2 +Void) A2 that is processed by the next handler.
In trivial cases, we have that H1 ≡ Free (SIG2 + Void) A2 and
run1 ≡ id need not be mentioned explicitly. Another common case
is H1 ≡ S→ Free (SIG2 +Void) A2 where, e.g., S is a type of state;
in this case there is a whole family of run functions of the form
run1 ≡ λp→ p s, one for each possible initial state s :: S.

The carrier types H1 and H2 in the above scheme are not entirely
satisfactory: they do not capture the modularity of effects. By
modularity of effects we mean two specific properties. Firstly, an
effect’s handler should work regardless of the other effects present.
Secondly, the effect’s handler should leave the syntax of other effects
alone when it handles programs.

We capture these requirements with carrier types H1 :: (∗ →
∗) → ∗ that are parametric in the remaining effects. Moreover,
we abstract those remaining effects to a polymorphic monad type
parameter m that does not reveal the free monadic structure and thus
does not allow any of the operations to be observed or duplicated.
Taken together, this results in the following signatures for a modular
handler’s algebra and generator:

alg :: Monad m⇒ SIG1 (H1 m)→ H1 m
gen :: Monad m⇒ A1→ H1 m

Note that the above algebra only takes care of SIG1 operations.
In order to deal with the operations of other effects, we require
an additional algebra for the remaining SIG2 effects that is also
parametric in those effects, i.e., it should treat them uniformly. We
capture this additional algebra in a type class for modular carriers:

class ModularCarrier c where
joinl :: Monad m⇒ m (c m)→ c m

where joinl is a parametric family of Eilenberg-Moore algebras, i.e.,
it respects the monad operations:

joinl◦ return = id (6)
joinl◦ join = joinl◦ fmap joinl (7)

These laws express an asymmetric version of the monad laws, where
only a left-sided join is provided. With such a modular carrier H1
of a given SIG1-algebra alg1, we can then derive a (SIG1 + SIG2)-
algebra that leaves the SIG2 syntax alone.

liftAlg ::∀sig1 sig2 c1.(Functor sig2,ModularCarrier c1)
⇒ ( sig1 (c1 (Free sig2))→ (c1 (Free sig2)))
→ ((sig1 + sig2) (c1 (Free sig2))→ (c1 (Free sig2)))

liftAlg alg1 = alg1Oalg2 where
alg2 :: sig2 (c1 (Free sig2))→ c1 (Free sig2)
alg2 op = joinl (Op (fmap return op))

In summary, we define a modular handler for a signature S from
values of type A to type B as the quadruple1 〈H,alg,gen,run〉 where
H :: (∗ → ∗)→ ∗ is a modular carrier, and all three of the algebra
alg ::Monad m⇒ S (H m)→H m, generator gen ::Monad m⇒ A→
H m and run function run ::Monad m⇒H m→m B are polymorphic
in the monad m.

Example To illustrate the above, we can give a modular handler
for state, which is similar to the handler for Free (STATE s) a
discussed earlier, except that the result a appears in a monadic
context m. Since we want to provide an instance for the modular
carrier type, we will wrap it in a newtype constructor:

newtype StateH s a m = StateH {runStateH :: s→ m a}
The ModularCarrier instance for this type is:

instance ModularCarrier (StateH s a) where
joinl mf = StateH (λ s→ do f ← mf ;runStateH f s)

Now the semantics of STATE can be given as follows:

genSH :: Monad m⇒ a→ StateH s a m
genSH x = StateH (λ s→ return x)
algSH :: Monad m⇒ STATE s (StateH s a m)→ StateH s a m
algSH (GET k) = StateH (λ s → runStateH (k s) s)
algSH (PUT s k) = StateH (λ → runStateH (k ()) s)

With an appropriate run function we get the modular STATE Int
handler 〈StateH Int Int,algSH ,genSH ,flip runStateH 5〉:
> (runId ◦flip runStateH 5◦ fold genSH algSH) (incr′>>get′)
6

Since StateH s a is a modular carrier we can compose it with other
effects. As a second effect to compose with, we will again show
how failure can be modelled, this time using effect handlers.

data FAIL k = FAIL

fail′ = Op FAIL

One handler for this is given by 〈MaybeH a m,genF,algF〉, where
the modular carrier is defined as:

newtype MaybeH a m = MaybeH {runMaybeH :: m (Maybe a)}
instance ModularCarrier (MaybeH a) where

joinl mf = MaybeH (do f ← mf ;runMaybeH f )

Observe that MaybeH uses the same representation as MaybeT , but
has its type parameters swapped; in Section 4.2 we show that other
monad transformers give rise to modular carriers in a similar manner.

The associated generator and algebra are:

genF :: Monad m⇒ a→MaybeH a m
genF x = MaybeH (return (Just x))
algF :: Monad m⇒ FAIL (MaybeH a m)→MaybeH a m
algF FAIL = MaybeH (return Nothing)

Now putting the pieces together, we can work with composition in
whichever way we want.

hdlFS :: s→ Free (FAIL+(STATE s+VOID)) a→Maybe a
hdlFS s = runVOID◦

flip runStateH s◦ fold genSH (liftAlg algSH)◦
runMaybeH ◦ fold genF (liftAlg algF)

hdlSF :: s→ Free (STATE s+(FAIL+VOID)) a→Maybe a
hdlSF s = runVOID◦

1 We often do not explicitly identify the run function, in particular when it is
a trivial newtype isomorphism.
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runMaybeH ◦ fold genF (liftAlg algF)◦
flip runStateH s◦ fold genSH (liftAlg algSH)

While the above two handlers for state and failure are both poly-
morphic in the value type a, this is not a necessity for handlers. Con-
sider the following alternative handler 〈Def m,genD,algD,runDef 〉
for failure that only works for Int computations.

newtype Def m = Def {runDef :: m Int}
instance ModularCarrier Def where

joinl mf = Def (do f ← mf ;runDef f )
genD :: Monad m⇒ Int→ Def m
genD x = Def (return x)
algD :: Monad m⇒ FAIL (Def m)→ Def m
algD FAIL = Def (return 0)

This modular handler does not abort the computation upon failure,
but instead proceeds with the default value 0. Section 3 shows how
to formulate similar monad transformers that can only be run with
computations of a particular value type.

2.5 Comparing the Two Approaches
The remainder of this paper compares the expressivity of the
two approaches. We start by highlighting some of the differences
between the two.

Overloadable Syntax Both approaches provide a monadic syntax
for effectful computations that can be overloaded with different se-
mantics. In the case of monad transformers this overloadable syntax
is captured in terms of a polymorphic type m that is constrained by
monad subclass constraints. For the state effect we use the type

MonadState s m⇒ m

Note that the constraint polymorphism not only leaves the semantics
open, but also whether other effects can be used in the computation.
In order to specify that multiple effects are combined, we pile up
monad subclass constraints. For instance, the constraint

(MonadState s m,MonadFail m)⇒ m

expresses that both the state and failure effects can be used.
In the case of algebraic effects, we use the free monad for the

syntax of monadic computations. It is parameterised in the signature
functor of the particular effects that can occur. Multiple effects
are combined using the (functor) coproduct of the signatures. For
instance, the type

Free (STATE s+FAIL)

provides state and failure effects. The type that specifies that the
state effect can occur with other effects is

Functor sig⇒ Free (STATE s+ sig).

Because the monad transformer approach uses type-class con-
straints in order to overload syntax, the order in which they are writ-
ten does not matter. For example, (MonadState s m,MonadFail m)
is the same constraint as (MonadFail m,MonadState s m). On the
other hand, the algebraic-effects approach seems less flexible, since
the coproduct fixes an order on signatures. However, this is not an
essential shortcoming, as there are implementation techniques that
abstract away the exact order of the coproduct [24, 39].

Expressivity of effect manipulating functions In the monad trans-
formers approach, effects are manipulated by member functions of
a monad subclass. In principle, there are no limitations on what a
member function can be, but this freedom is a double-edged sword:
the functions have no structure and therefore it is difficult to solve the
problem of lifting an operation of a monad to the transformer monad.

In the algebraic effects approach, effects are introduced with alge-
braic operations as determined by a signature. Algebraic operations
for a signature functor SIG correspond to functions ∀a.SIG a→M a.
This restriction on the type of the operations provides more struc-
ture, but leaves out operations which work over a scope, such as
the exception-handling operation catch. The problem of expressing
scoping operations led Plotkin and Pretnar [31] to introduce the
notion of handlers. However, Wu et al. [44] showed that treating
scoping operations as handlers causes modularity problems, since
these operations tie together syntax and semantics, and therefore
some semantics cannot be expressed without changing the original
program (see discussion below).

Algebraic operations can be easily lifted through a monad
transformer by post-composing with lift. An advantage of the
modular algebraic approach is that handlers only need to deal with
the topmost effect, whereas in the monad transformer approach one
would require a special lifting function. Therefore, there seems to
be a trade-off: either we provide liftings for scoped operations such
as catch, or we lose some modularity.

Effect Semantics Both approaches provide a way to assign differ-
ent semantics to the same syntax.

In the case of monad transformers, the semantics are assigned
by instantiating the polymorphic type variable m with a stack of
monad transformers that satisfies all the type class constraints. The
variation in semantics is possible because there are different monad
transformer stacks that satisfy the same set of constraints.

Firstly, we can order the same transformers in different ways,
which gives rise to different interactions between the effects. For
instance, both StateT s (MaybeT Id) and MaybeT (StateT s Id) sat-
isfy the constraints (MonadState s m,MonadFail m), but give rise
to different interactions between state and failure handling.

Secondly, multiple monad transformers can satisfy the same
individual constraint. For instance, the logging state transformer
also satisfies MonadState s m and records the intermediate states.

newtype LogStateT s m a = LST {runLST :: s→ m (a,s, [s])}
instance Trans (LogStateT s) where

lift m = LST (λ s→ do x← m;return (x,s, [ ]))
instance Monad m⇒Monad (LogStateT s m) where

return x = LST (λ s→ return (x,s, [ ]))
m>>= f = LST (λ s→ do (x,s′,h1) ← runLST m s

(y,s′′,h2)← runLST (f x) s′

return (y,s′′,h1 ++h2))

instance Monad m⇒MonadState s (LogStateT s m) where
get = LST (λ s→ return (s,s, [ ]))
put s = LST (λ s′→ return ((),s, [s′ ]))

The instance that is used is decided by specifically stating the desired
concrete type.

In the algebraic-effect approach, the handlers are in charge of
assigning semantics by folding the syntax tree into a particular
carrier by means of a particular algebra. By using different handlers
to interpret the same effect, we obtain flexibility in the interpretation.
For instance, the following handler logs state operations:

newtype LogStateH s a m = LS {runLSH :: s→ [s]→ m (a, [s])}
genLS :: Monad m⇒ a→ LogStateH s a m
genLS x = LS (λ s h→ return (x,reverse h))
algLS :: STATE s (LogStateH s a m)→ LogStateH s a m
algLS (GET k) = LS (λ s h→ runLSH (k s) s h)
algLS (PUT s k) = LS (λ s′ h→ runLSH (k ()) s (s′ : h))
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Similar to the transformer approach, we may also control the effect
interaction by running the handlers in different orders2. However,
there is a catch: since effect manipulating functions such as catch are
handlers, a program may have handlers interspersed with algebraic
operations. Consequently, the ordering of effects may be partially
determined by the structure of program, and some interpretations
may be impossible to achieve for such a program [44].

Despite these differences, monad transformers and effect handlers
have much in common. In the remainder of this paper we will
formalise these similarities by showing a class of transformers that
correspond to effect handlers, and vice versa. This establishes that
there is a significant common ground between the two approaches.

3. Algebraic Effects as Monad Transformers
This section establishes that the algebraic effects approach is defi-
nitely not more expressive than the transformers approach by em-
bedding the former in the latter. In particular, we show how to
generically derive a monad transformer from an algebraic effect.

3.1 From Signature to Monad Subclass
Whereas in the algebraic effects approach operations are charac-
terised by a signature functor, in the monad transformer approach
operations are given by a monad subclass. We define a monad sub-
class in terms of a given signature functor sig.

class (Monad m,Functor sig)⇒MonadEff sig m | m→ sig
where eff :: sig a→ m a

This class declaration is generic in the signature and provides exactly
one algebraic operation eff that distinguishes between an effect’s
different operations by taking the syntax of the desired operation as
a parameter.

Instances of MonadEff sig m are in a one-to-one correspondence
with operations op :: sig (m a)→ m a with the following property:

join◦op = op◦ fmap join (8)

In fact, this is how algebraic operations are usually presented.
However, we prefer our implementation, in which algebraicity is
enforced by the type system alone.

The correspondence between the two presentations of algebraic
operations is as follows:

algEff :: MonadEff sig m⇒ sig (m a)→ m a
algEff = join◦ eff
fromAlg :: (Functor sig,Monad m)
⇒ (∀a.sig (m a)→ m a)→ (sig a→ m a)

fromAlg op = op◦ fmap return

This isomorphism can be shown by proving in one direction that
fromAlg algEff = eff , and in the other direction, assuming that
eff = fromAlg op and that op is algebraic, then algEff = op.

One instance of this class is the following, which shows that for
any signature sig, the effect of interpreting it in the free monad is:

instance Functor sig⇒MonadEff sig (Free sig) where
eff op = Op (fmap return op)

This places a return at every continuation.

Alternative Signatures The type class MonadEff provides a
generic operation which is not always the most convenient form
for operations. To counter this, we can usually provide more conve-
nient auxiliary operations, by using so-called generic effects [30].
Consider the following (parametrised) functor:

2 In our crude implementation, we would also need to re-arrange the order
of the coproduct of signatures to match the order of handlers.

data SIG a b k = OP a (b→ k)
instance Functor (SIG a b) where

fmap f (OP i k) = OP i (f ◦ k)

For this functor we have the following equivalence [19]. For all
functors m, and types a and b,

a→ m b ∼= ∀x.SIG a b x→ m x (9)

The components of the isomorphism are as follows:

toSig :: Functor m⇒ (a→ m b)→ (∀x.SIG a b x→ m x)
toSig f (OP a g) = fmap g (f a)
fromSig :: Functor m⇒ (∀x.SIG a b x→ m x)→ (a→ m b)
fromSig op a = op (OP a id)

When a signature functor is isomorphic to SIG A B for some A and B,
then we can use the equivalence above and obtain a generic effect.

For example, for the state effect, we can recover the MonadState
interface of Section 2.2. The signature STATE s is isomorphic to
SIG () s+SIG s (). By equivalence (9) we obtain two operations:

get :: MonadEff (STATE s) m⇒ ()→ m s
get () = eff (GET id)
put :: MonadEff (STATE s) m⇒ s→ m ()
put s = eff (PUT s id)

Lifting eff of the base monad through a monad transformer T is
simply post-composition with lift:

instance MonadEff sig m⇒MonadEff sig (T m) where
eff op = lift ◦ eff

Therefore, the lifting of algebraic operations through any monad
transformer is completely unproblematic and an implementation
could provide it automatically.

3.2 From Handler to Monad Transformer
Now that we have a suitable monad subclass, we can provide a
monad transformer that instantiates this subclass in terms of a given
handler 〈H,gen,alg,run〉. In fact, we have two ways to do so.

The Free Transformer The free monad transformer over a given
signature sig is a generic monad transformer that instantiates
MonadEff .

newtype FreeT sig m a = FreeT {runF :: m (FreeF sig m a)}
data FreeF sig m a = ReturnF a | OpF (sig (FreeT sig m a))

Its monad instance is analogous to the free monad, except that it
interleaves operations with the transformed monad.

instance (Monad m,Functor sig)⇒Monad (FreeT sig m) where
return x = FreeT (return (ReturnF x))
(FreeT t)>>= f = FreeT (t>>=go) where

go (ReturnF a) = runF (f a)
go (OpF op) = return (OpF (fmap (>>=f ) op))

The transformed monad FreeT sig1 m implements both the opera-
tions from the signature sig1 and the algebraic operations provided
by the monad m. Thus, we obtain the following instance:

instance (Functor sig1,MonadEff sig2 m)
⇒MonadEff (sig1 + sig2) (FreeT sig1 m) where
eff (Inl op) = FreeT (return (OpF (fmap return op)))
eff (Inr op) = lift (eff op)

This definition clearly does not rely on the handler at all. All the work
to actually interpret the syntax and recover the handler’s semantics
is in the corresponding fold function.
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foldFreeT :: (Monad m,Functor sig,ModularCarrier h)
⇒ (a→ h m)
→ (sig (h m)→ h m)
→ FreeT sig m a→ h m

foldFreeT gen alg = goM where
goM = joinl◦ fmap goSig◦ runF
goSig (ReturnF x) = gen x
goSig (OpF op) = alg (fmap goM op)

For all signatures sig1 and sig2, it is the case that Free (sig1 + sig2)
is isomorphic to FreeT sig1 (Free sig2). The isomorphism is given
as follows:

toFreeT :: (Functor sig1,Functor sig2)
⇒ Free (sig1 + sig2) a→ FreeT sig1 (Free sig2) a

toFreeT = fold return (join◦ eff )
fromFreeT :: (Functor sig1,Functor sig2)

⇒ FreeT sig1 (Free sig2) a→ Free (sig1 + sig2) a
fromFreeT = join◦ fold return (join◦ eff ◦ Inr)

◦ fmap fromFreeF ◦ runF where
fromFreeF (ReturnF a) = return a
fromFreeF (OpF op) = join (eff (Inl (fmap fromFreeT op)))

The functions above are mutual inverses, but they are also monad
morphisms. (A category-theory inclined reader will surely recognise
this as an obvious consequence of Hyland, Plotkin, and Power’s [15]
characterisation of Free sig m as a coproduct of m and Free sig in
the category of monads and monad morphisms.) Moreover, the
respective folds correspond:

fold gen (liftAlg alg) = foldFreeT gen alg◦ toFreeT

The involved types and functions between them are summarised in
the commutative diagram in Figure 1(a).

Finally, FreeT ’s run function puts everything together:

runFreeT :: (Monad m,Functor sig,ModularCarrier h)
⇒ (a→ h m)→ (sig (h m)→ h m)→ (h m→ m b)
→ FreeT sig m a→ m b

runFreeT gen alg run = run◦ foldFreeT gen alg

The Non-Free Transformer The above definition is not entirely
satisfactory because it relies on FreeT as an intermediate data
structure. Instead, we may want a transformer that directly captures
in its carrier type the intended denotation h. We can obtain this with
a particular instance of the continuation monad.

newtype Cont r a = Cont {runCont :: (a→ r)→ r}
We specialise Cont so that the return type is a modular carrier, and
the monad instance for ContH is essentially the same as the well-
established one for Cont.

newtype ContH h (m ::∗→ ∗) a =
ContH {unContH :: (a→ h m)→ h m}

instance Monad (ContH r m) where
return x = ContH (λk→ k x)
m>>= k = ContH $ λc→ unContH m (λx→ unContH (k x) c)

When h is a modular carrier, ContH h is a monad transformer.

instance ModularCarrier h⇒ Trans (ContH h) where
lift m = ContH (λk→ joinl (fmap k m))

For any fixed signature SigH, modular carrier H, and algebra
algH :: SigH (H m)→ H m, we may define ContH H m to be a
signature monad, using the following generic function effContH:

effContH :: (Functor sig)
⇒ (sig (h m)→ h m)

→ sig a→ ContH h m a
effContH alg s = ContH (λk→ alg (fmap k s))
instance (MonadEff sig2 m)
⇒MonadEff (SigH+ sig2) (ContH H m) where

eff (Inl op) = effContH algH op
eff (Inr op) = lift (eff op)

We embed syntax in the ContH h transformer using the function
toContH alg. Unlike the transformation into the free monad trans-
former, the application of toContH alg is effectively giving seman-
tics to the syntax, and therefore there is no way back.

toContH :: (Functor sig1,Functor sig2,ModularCarrier h)
⇒ (∀m.Monad m⇒ sig1 (h m)→ h m)
→ Free (sig1 + sig2) a→ ContH h (Free sig2) a

toContH alg = fold return (join◦ (effContH algO(lift ◦ eff )))

The correctness of this embedding lies in the fact that for all algebras
alg, the function toContH alg is a monad morphism, and that any
handler fold gen (liftAlg alg) can be recovered as the following
composition:

fold gen (liftAlg alg) = unContH gen◦ toContH alg

The involved types, functions, and equations are summarised in the
commutative diagram in Figure 1(b). Again, the run function puts
everything together:

runContH :: (Monad m,Functor sig,ModularCarrier h)
⇒ (a→ h m)→ (h m→ m b)
→ ContH h m a→ m b

runContH gen run = run◦unContH gen

We have shown that it is possible to embed the algebraic-
operations approach into the monad-transformer approach in two
ways. The first embedding goes through the free monad transformer.
This transformer is well known and there are techniques that lead
to efficient implementations [20, 41]. On the other hand, fusion of
computations is more easily achieved for the ContH transformer of
the second embedding [43].

4. Monad Transformers as Algebraic Effects
Given a monad subclass MonadX and corresponding transformer T
that implements the operations of MonadX, we need to distinguish
between the algebraic operations, and the non-algebraic ones.

The lack of structure of the members of monad sub-classes
greatly complicates a systematic translation from monad transform-
ers into the more structured approach of modular algebraic effects.
Nevertheless, it is often possible to systematically identify algebraic
operations using the equivalences shown in Section 3.1.

4.1 Transformer Signature
As discussed in Section 3.1, algebraic operations come in many
different guises. However, in the monad-transformer approach, they
usually are presented as a generic effect:

op :: A→ m B

where A and B are types that do not contain the type variable m.
Using equivalence (9), we obtain that the signature functor for such
an operation must be SIG A B.

Any type variables that are quantified at the level of the type
class MonadX become type parameters of the signature functor.
This happens for instance, in the case of the s type parameter of
MonadState. The methods get and put of the MonadState class can
be written in the above form as:

get :: ()→ m s
put :: s → m ()
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(a) The free monad transformer: (b) The continuation monad:

FreeT sig1 (Free sig2) aFree (sig1 + sig2) a

h (Free sig2)

sig1 a sig2 a

fromFreeT

toFreeT

foldFreeT gen algfold gen (liftAlg alg)

eff ◦ Inl

eff ◦ Inl eff ◦ Inr

eff ◦ Inr sig1 a sig2 a

Free (sig1 + sig2) a ContH h (Free sig2) a

h (Free sig2)

toContH alg

fold gen (liftAlg alg) unContH gen

eff ◦ Inl lift ◦ eff

effContH alg eff ◦ Inr

Figure 1. Summary of monad transformers induced by handlers

where the trivial unit parameter of get makes the operation type fit.
This yields the signature functor:

data STATE′ s k = GET′ () (s→ k) | PUT′ s (()→ k)

Since the unit type () is trivial, we can remove it from the signature,
thus giving us the signature STATE discussed in Section 2.3.

Any type variables that are universally quantified and occur only
in the return type of a generic effect can be interpreted as a nullary
operation. For instance, this happens to the type variable a of the
mzero method in the MonadPlus typeclass.

class Monad m⇒MonadPlus m where
mzero :: m a
mplus :: m a→ m a→ m a

The type of mzero is, explicitly, ∀a.Monad m⇒ m a. The universal
quantification on a means that an a value is never produced, and
therefore it can be replaced by an empty type:

data Void

which has the property that for every type r there is exactly one
inhabitant of type Void→ r. Changing the type ∀a.Monad m⇒m a
to Monad m⇒m Void, and adding unit (as we did for get), we arrive
at the following equivalent type for mzero:

mzero :: ()→ m Void

The type of the operation mzero gives rise to the signature functor:

data MPLUS k = MZERO () (Void→ k) | ...
Since both the unit type () and the type (Void→ r) are trivial, we
can remove them.

data MPLUS k = MZERO | ...
But how can we make mplus fit?

Signature Reformulation Sometimes, the traditional formulation
of a method signature does not fit the pattern, but the signature can
be reformulated into an equivalent form.

Although the operation mplus :: m a→ m a→ m a does not fit
the required shape, we can restrict ourselves to those instances that
satisfy property (8).3 With this assumption, the operation mplus is
algebraic and is equivalent to an operation

choose :: a→ a→ m a

for non-deterministic choice between two values. The operation
choose is in the right shape of an algebraic operation for the functor
CHOOSE:

data CHOOSE k = CHOOSE k k

Incorporating this into MPLUS by renaming the constructor, we arrive
at the following signature for the MonadPlus typeclass:

3 This restriction is reasonable because it covers most of the usual cases [35],
except for Maybe.

data MPLUS k = MZERO |MPLUS k k

This is, of course, isomorphic to FAIL+CHOOSE.
This is a perfectly standard signature, which we can also give a

semantics with the handler 〈MPlusH m a,genMP,algMP〉:
newtype MPlusH a m = MPlusH {runMPlusH :: m [a]}
instance ModularCarrier (MPlusH a) where

joinl = MPlusH ◦ join◦ fmap runMPlusH

genMP :: Monad m⇒ a→MPlusH a m
genMP x = MPlusH (return [x ])
algMP :: Monad m⇒MPLUS (MPlusH a m)→MPlusH a m
algMP (MPLUS k1 k2) = MPlusH (do xs← runMPlusH k1

ys← runMPlusH k2
return (xs++ ys))

algMP (MZERO) = MPlusH (return [ ])

Since joinl is isomorphic to join, MPlusH a is clearly a modular
carrier.

4.2 Transformer Handler
It is easy to write a modular handler for a monad transformer T: the
carrier type of the handler is the transformer type itself, as long as
we fix the return type:

newtype WrapT a m = WrapT {unWrapT :: T m a}
The monadic structure readily provides implementations for the
operations and for the generator. In detail, if T implements a
signature SIGT via a function effT :: Monad m⇒ SIGT a→ T m a.
Then, we define the algebra and the generator respectively as:

algT :: (Monad m)⇒ SIGT (WrapT a m)→WrapT a m
algT = WrapT ◦ join◦ effT ◦ fmap unWrapT
genT :: Monad m⇒ a→WrapT a m
genT = WrapT ◦ return

The transformer T also makes for a modular carrier:

instance ModularCarrier (WrapT a) where
joinl = WrapT ◦ join◦ lift ◦ fmap unWrapT

With this, we define the following handler:

hdlT :: Free (SIGT + sig) a→WrapT a (Free sig)
hdlT = WrapT ◦ fold genT (liftAlg algT)

The correctness of this embedding is in the fact that unWrapT hdlT
is a monad morphism, and that it respects the effT function in the
sense that

effTOeff = unWrapT ◦hdlT ◦ eff
where eff in the left-hand side of the equation comes from the
MonadEff instance of the Free sig type, eff in the right-hand side
comes from the instance for Free (SIGT + sig). The fact above
follows from the universal property of free monads. It states that
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for all signatures (functors) Sign, monads M, and polymorphic
functions (natural transformations) f :: Sign a→M a, it is the case
that fold return f is a monad morphism, and the following holds
for all monad morphisms m, where eff comes from the MonadEff
instance of the Free Sign type.

m = fold return f ⇐⇒ m◦ eff = f

Finally, given the transformer’s run function runT :: Monad⇒
T m A→ m B, we can derive an appropriate run function for the
handler:

run :: Monad m⇒WrapT A m→ m B
run = runT ◦unWrapT

5. Case Study: Call/CC
This section investigates how to express the well-known call-with-
current-continuation operation callCC with both monad transform-
ers and algebraic effects & handlers.

5.1 Established Implementation
The MTL monad transformers library features an established inter-
face of callCC in the form of the MonadCont type class:

class Monad m⇒MonadCont m where
callCC :: ((a→ m b)→ m a)→ m a

which is of course implemented by the continuation monad Cont r:

instance MonadCont (Cont r) where
callCC f = Cont (λk→ runCont (f (λx→ Cont (\_→ k x))) k)

This implementation has been generalised to a monad transformer
in a straightforward way:

newtype ContT r m a = CT {runCT :: (a→ m r)→ m r}
instance Monad m⇒MonadCont (ContT r m) where

callCC f = CT (λk→ runCT (f (λx→ CT (\_→ k x))) k)

At first sight, an operation could not be further from algebraic than
callCC. The main difficulty is that the parameter a appears in both
positive and negative position: it occurs both in the domain and
codomain of functions. This makes callCC rather unsuitable for the
algebraic effects & handlers approach, and indeed, we are not aware
of any existing implementation that offers callCC. Hence, it seems
that monad transformers are more expressive on this account.

5.2 Reformulation
Nevertheless, following Thielecke [40] and Fiore & Staton [11], we
can decompose callCC into two algebraic operations, given by the
following MonadJump type class:

class Monad m⇒MonadJump ref m | m→ ref where
jump :: ref a→ a→ m b
sub :: (ref a→ m b)→ (a→ m b)→ m b

Here ref a is the type of a reference to a computation that takes a
value of type a as input. The jump operation abandons the current
continuation and instead runs the referenced computation with the
given input. The computation sub p q constructs a reference out of
the alternative computation q and then runs the main computation p
with this reference. This informal characterisation is captured in the
following four laws,

sub (λ r→ jump r x) k ≡ k x
sub (λ → p) k ≡ p
sub p (jump r′) ≡ p r′

sub (λ r1→ sub (λ r2→ p r1 r2) (k2 r1)) k1 ≡
sub (λ r2→ sub (λ r1→ p r1 r2) k1) (sub k2 k1)

in addition to the already informally stated requirement that jump
and sub are algebraic:

jump r x>>= k ≡ jump r x
sub p q>>= k ≡ sub (p >=> k) (q >=> k)

The former expresses that a jump abandons the current continuation
k. The latter expresses that both the main computation and the
alternative computation constitute of the same common continuation
k prefixed by respectively p and q.

Encoding callCC We can express callCC in terms of jump and
sub as follows.

callCC f = sub (λ ref → f (jump ref )) return

Here the exit mechanism is made explicit by the jump operation,
which jumps to return >=> k≡ k, where k is the current continuation.

Encoding jump and sub Vice versa, we can also express jump and
sub in terms of callCC.

newtype Ref m a = ∀r.R {unRef :: a→ m r}
jump (R exit) x = exit x>> return⊥
sub k1 k2 = callCC (λexit→ k1 (R (k2 >=> exit)))

Here we represent a reference to an alternative computation by
an actual computation that performs this jump, wrapped in the
newtype Ref . Hence, jumping consists of unwrapping the newtype
and running the computation, followed by an unreachable return⊥
to obtain an arbitrary return type. The sub operation grabs the current
continuation exit by means of callCC, prefixes it with the alternative
k2, wraps it in the newtype and hands it off to the main computation
k1.

The two encodings are mutual inverses. We can easily estab-
lish one direction of this property with straightforward equational
reasoning if we assume the following usual callCC property [6]:

callCC f = callCC (λexit→ f (λx→ exit x>>= k))

which states that exit never returns.
The other direction of the proof is more involved and requires

the techniques developed by Thielecke and by Fiore and Staton.

5.3 Alternative Handler for callCC

The algebraic operations jump and sub give rise to the following
signature:

data SUBST ref k = ∀a.JMP (ref a) a
| ∀a.SUB (ref a→ k) (a→ k)

for which we can easily derive a modular handler from the ContT
monad transformer definition following the recipe of Section 4.
However, we can also provide a more direct alternative implemen-
tation that does not require an existing implementation of callCC.
The carrier of this direct handler is the trivial identity carrier IdH .

newtype IdH a m = IdH {runIdH :: m a}
The key idea of the handler is to represent references of type ref a as
functions a→ IdH r m. We want the type ref a to be functorial in the
type a, but in Haskell functoriality is always in the last argument of
a parameterized type. To work around this limitation, we represent
a→ IdH r m by the newtype alias IdH r m :← a, where a has been
exposed as the last parameter.

newtype b :← a = Switch {( $) :: a→ b}
The constructor Switch :: (a→ b)→ (b :← a) switches the direction
of a function, and the deconstructor ( $) :: (b :← a)→ a→ b is
reminiscent of Haskell’s function application ($) ::(a→ b)→ a→ b.
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With this choice of representation, the handler’s algebra and
generator are trivial.

genSB :: Monad m⇒ r→ IdH r m
genSB x = IdH (return x)
algSB :: Monad m⇒ SUBST ((:←) (IdH r m)) (IdH r m)→ IdH r m
algSB (JMP ref x) = ref $x
algSB (SUB k1 k2) = k1 (Switch k2)

Note that in the type of the algebra, neither the value type r nor
the monad type m is orthogonal with respect to the functor’s type
SUBST ((:←) (IdH r m)). Hence, when we use the free monad
transformer recipe of Section 4, this non-orthogonality carries over
to the run function:

runSubstT :: Monad m⇒ FreeT (SUBST ((:←) (IdH r m))) m r
→ IdH r m

runSubstT = foldFreeT genSB algSB

We can however institute orthogonality with respect to the value
type by means of an additional continuation argument.

runSubstT ′ :: Monad m⇒ FreeT (SUBST ((:←) (IdH r m))) m a
→ ((a→ m r)→ IdH r m)

runSubstT ′ p k = runSubstT (p>>= lift ◦ k)

This brings us essentially back to the continuation monad trans-
former as ((a→ m r)→ IdH m r)∼= CodT r m a.

6. Related Work
There is a lot of related work that studies either monad transformers
or algebraic effects and handlers separately.

6.1 Algebraic Effects and Handlers
Plotkin and Power were the first to explore effect operations [32],
and gave an algebraic account of effects [33] and their combina-
tion [15]. Subsequently, Plotkin and Pretnar [34] have added the
concept of handlers to deal with exceptions. This theoretical devel-
opment has led to many language and library implementations.

Eff Perhaps the most prominent language is Eff [2], an OCaml-
like language with native support for algebraic effects and handlers.
It does not feature an explicit free monad datatype, but distinguishes
between syntactic sorts for (possibly effectful) computations and
pure values. Eff only supports handler carrier types of the form
(using our terminology) Free F A; carriers of the form S→ Free F B
are encoded as Free F (S→ Free F B). A special case are handlers
that introduce new effects in the program, i.e., of type Free (F +
G) A→ Free (H +G) B. We can model their modular carrier as
FreeT H since FreeT H (Free G)∼= Free (H+G).

While Eff implicitly forwards operations that are not explicitly
handled, its subtyping-based type system [3] does not allow the
characterisation of modular carriers. Nevertheless many of its
example handlers fall in this class. Eff also allows a class of
semi-modular of handlers that rely on the presence of another
effect, which can be expressed as relaxing (Monad m) ⇒ m to
(MonadEff F m)⇒ m.

Handlers in Action Handlers in Action [22] builds on a formal-
isation similar to Eff’s with carrier types essentially of the form
Free F A and a simple type system that provides neither subtyping
nor parametric polymorphism. Yet, it comes with an implementation
in Haskell, among other functional languages, whose Template-
Haskell front-end syntax supports open (i.e., essentially modular)
handlers and exploits Haskell’s polymorphism to encode them. In
addition to Free F A, this implementation also supports carrier types
of the form S→ Free F A. This work also introduces shallow han-

dlers that only handle the first operation. We can model these as
folds with tupling [14].

The implementation employs a final encoding [5] of the free
monad syntax where a conjunction of type class constraints im-
plements the coproduct construction and provides various ways to
express handlers, either as explicit folds and builds or in fused form
(see [43] for an explanation of the latter).

Extensible Effects The Extensible Effects Haskell library [24] has
arrived at essentially the same functionality, but does not attribute
the algebraic effects and handlers theory as its original inspiration.
This work puts much emphasis on efficient representation of the
free monad and the functor co-product, more recently [23] using
an inlined co-Yoneda construction and a queue datatype [41]. The
library provides modular fold recursion schemes for the Free F A and
S→ Free F A. Moreover, it replicates much of the functionality of
the MTL monad transformers library in terms of modular handlers.

Other Implementations Idris provides an effect handlers li-
brary [4] based on the indexed free monad with built-in co-Yoneda
construction which represents the signature coproduct as a type-level
list. Every handler has a carrier of the form ∀a.Si→M a and their
composition yields a carrier ∀a.(S1, ...,Sn)→M a. Moreover, the
handlers must share a common generator (S1, ...,Sn)→ A→M B.

Multicore OCaml comes equipped with algebraic effects and han-
dlers intended to implement thread schedulers [8]. These handlers
are similar to Eff’s, but lack a type system.

The Frank language [27] shows many similarities with Eff, but
allows arbitrary recursion patterns for handlers and even matching
on multiple computations at the same time.

6.2 Monad Transformers
Moggi [28] used monads to model side-effects while working on
computational models. Independently, Spivey [37] used monads
while working on a theory of exceptions. Wadler [42] popularized
monads in the context of Haskell, and others (e.g., [21, 38]) have
sought to modularize them.

Monad transformers emerged [7, 25] from this process, and in
later years various alternative implementation designs, facilitating
monad (transformer) implementations, have been proposed, such
as Filinksi’s layered monads [10] and Jaskelioff’s Monatron [17].
The Monatron library has a more structured notion of operation
associated to a transformer in order to facilitate the lifting of
operations [16, 18], and therefore can distinguish which operations
are algebraic and which are not.

The administrative transformations on signature coproducts men-
tioned in Section 2.5 have also been studied for monad transformers
by Schrijvers and Oliveira [36].

A very general way to combine monads is their coproduct [26],
of which the coroduct of free monads used in the algebraic effects
approach is a special case. Typically, the coproduct of two monads
is too general to be direcly useful. Instead, the coproduct is post-
processed with a mediating monad morphism into a monad that
combines the two effects more usefully.

7. Conclusion
In this paper we have studied the use of transformers and alge-
braic effects to model a variety of modular effects. We have seen
that monad transformers use monad subclass constraints to allow
modular syntax, and that the semantics is given by a monad homo-
morphism. Algebraic effects provide modular signature functors
whose semantics are given by folds over syntax trees.

Each approach can be given in terms of the other. Modular
effect handlers can be expressed in terms of monad transformers by
working with the free monad transformer. Monad transformers for
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algebraic operations can be expressed in terms of effect handlers.
The key is to identify modular carriers for handlers, and to notice
that every transformer is such as modular carrier.
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A. Equivalence of Algebraic operations
For any signature sig and monad m, operations eff ::∀a.sig a→ m a
are in one-to-one correspondence with operations op :: sig (m a)→
m a, such that the join of the monad is respected

join◦op = op◦ fmap join (8)

The correspondence of algebraic operations is witnessed by the
following functions:

algEff :: MonadEff sig m⇒ sig (m a)→ m a
algEff = join◦ eff
fromAlg :: (Functor sig,Monad m)
⇒ (∀a.sig (m a)→ m a)→ (sig a→ m a)

fromAlg op = op◦ fmap return

One direction of the proof is the following:

fromAlg algEff
= { definition of fromAlg and algEff }

join◦ eff ◦ fmap return
= { naturality of eff }

join◦ fmap return◦ eff
= { monad law (2) }

eff

In the other direction, let us assume that eff = fromAlg op, and that
op respects the join of the monad (i.e. has property (8)).

algEff
= { definition of algEff }

join◦ eff
= { assumption }

join◦ fromAlg op
= { definition of fromAlg }

join◦op◦ fmap return
= { property (8) }

op◦ fmap join◦ fmap return
= { functors, monad law (1) }

op

B. More on Handlers as Transformers
Now, we give a categorical explanation and a generalisation of the
constructions given in Section 3. To distinguish between Haskell
code and the more general constructions, we use a categorical
notation. We denote functors as F,M,L, . . ., and their composition
by juxtaposition, for example ML. We use the letter Σ to denote
endofunctors that represent signatures.

We abuse the notation by identifying monads with their under-
lying endofunctor. We use η : Id→ M for the unit (return), and
µ : MM → M for the multiplication (join). If there is more than
one monad in the context, we use superscripts to assign the natural
transformations to appropriate monads, for example ηM : Id→M
and µM : MM→M.

We denote the (algebraically) free monad generated by an
endofunctor Σ as Σ∗. Its unit and multiplication are denoted as ηF

and µF respectively. The transformation that adds a new layer to the
monad (the action of the free Σ-algebra) is called cons : ΣΣ∗→ Σ∗.

B.1 Background: The Free Monad Transformer
The free monad transformer (aka the resumption monad) was
introduced by Moggi [28]. The properties shown in this subsection
were discussed by Hyland, Plotkin, and Power [15].

The carrier of the free monad transformer of an endofunctor Σ
and a monad M is given using initial algebras as A 7→ µX .M(ΣX +

A). Alternatively, using the rolling lemma [1], it can be given as the
composition M(ΣM)∗.

The category of Eilenberg–Moore algebras for M(ΣM)∗ can be
described as follows:

• Objects are tuples (A, f : ΣA→ A, m : MA→ A), where m is an
Eilenberg–Moore algebra.

• A morphism between (A, f ,m) and (B,g,n) is given by a mor-
phism h : A→ B such that h · f = g ·Σh and h ·m = n ·Mh.

The free object in this category generated by an object A is given
as (M(ΣM)∗A, algF, algM), where:

algF= (ΣM(ΣM)∗A cons−−−→ (ΣM)∗A
ηM

−−→M(ΣM)∗A)

algM= (MM(ΣM)∗A
µM

−−→M(ΣM)∗A)

The freeness property in this case means that given any other
algebra (A, f ,m), there exists a unique Eilenberg–Moore algebra
〈〈 f ,m〉〉 : M(ΣM)∗A→ A that makes the following diagram com-
mute:

ΣA ΣM(ΣM)∗A M(ΣM)∗A MM(ΣM)∗A MA

A

ΣηA algF algM MηA

f m〈〈 f ,m〉〉

Let F be an endofunctor. Consider two natural transformations
φ : ΣF → F and ψ : MF → F such that each component of ψ is
an Eilenberg–Moore algebra (in other words, F is a left module
over M with the action given as ψ). Then, the family of morphisms
〈〈φ ,ψ〉〉A = 〈〈φA,ψA〉〉 is a natural transformation M(ΣM)∗F → F .

B.2 Background: The Codensity Monad
Now, we generalise the results from Section 3. Instead of working
with modular carriers, we work with left modules [29]. A left
module over a monad M is an endofunctor S together with a natural
transformation δ : MS → M such that δ ·Mδ : MMS → S and
δ ·ηS : S→ S.

We generalise the continuation monad to the codensity monad:

newtype Cod f a = Cod (∀x.(a→ f x)→ f x)
runCod k (Cod t) = t k
instance Monad (Cod f ) where

return x = Cod (λk→ k x)
(Cod p)>>= f = Cod (λk→ p (runCod k ◦ f ))

First, we develop some theory of such codensity monads gener-
ated by modules over monads. Then, we discuss how this setting
instantiates to the continuation monad with the answer type given
by a modular carrier.

Instead of reasoning directly about Haskell code, we take a more
abstract approach employing right Kan extensions. We benefit from
Hinze’s [13] string diagrams for Kan extensions.

Let C , D , and E be categories. A right Kan extension of a functor
G : C → E along a functor J : C →D consists of:

• a functor G/J : D → E ,
• a natural transformation run : (G/J)J→ G

such that for all functors F : D → E and natural transformations
α : FJ→ G, there exists a unique natural transformation [α] : F →
G/J (called the shift of α) with the property

run · [α]J = α (10)
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In the string diagram notation, we denote run using a yellow dot:

G/J J

G

Given a natural transformation α : FJ→ G

F J

G

α

we denote [α] : F → G/J using brackets:

F

G/J

α J
G

The property (10) can be expressed using string diagrams as:

F J

G/J

G

α J
G

=

F J

G

α

(11)

The codensity monad of a functor F : D → C is given by the
right Kan extension F/F . The unit is given by ηc = [id], while
the multiplication is given by µc = [run · (F/F)run]. Using string
diagrams, they can be expressed as:

ηc =

δ

F/F

F
µc =

F/F F/F

F/F

F

F

F

B.3 The Codensity Monad of a Left Module
We fix a monad M. Let L be a left module over M. This means
that L is an endofunctor and there exists a natural transformation
δ : ML→ L such that the following equalities hold:

M M

M

L

L

µ

δ
=

M M L

L

δ

δ

(12)

M

L

L

η

δ =

L

L

(13)

Theorem 1. The natural transformation [δ ] : M→ L/L is a monad
morphism.

Proof. Preservation of the multiplication:

M M

L/L

δ δL
L

L/L

L
L

L/L L

L

L

(11)
=

M M

L/L

δ δL
L

L/L

L
L

L

(11)
=

M M

δ

L/L

δ L
L

L

(12)
=

M M

δ

L/L

µ L

L

M

Preservation of the unit:

η

δ

L/L

LM
L

(13)
=

δ

L/L

L

Corollary 2. If L is a left module over M, so is L/L.

Now, the results given in Section 3 can be recovered simply by
noticing that, for a modular carrier h and a monad m, the type h m is a
module over m understood as a constant endofunctor. The discussed
monad morphism is the lift operation for the ContH transformer.

B.4 The Free Monad Transformer vs The Codensity Monad
We generalise the type class of modular carriers to parametrised left
modules:

class PLModule m l where
joinl′ :: Monad m⇒ m (l a)→ l a

We also introduce a wrapper for the codensity monad, so that we
can parametrise it with a monad:

newtype HCod h (m ::∗→ ∗) a = HCod (∀x.(a→ h m x)→ h m x)

Monad Transformers and Algebraic Effects: What Binds Them Together 14 2016/6/10



Note that, according to Theorem 1, for all parametrised left modules
h, the type HCod h is a monad transformer.

Now, we generalise the results connecting handlers with the
codensity monad from Section 3 to the free monad transformer
instead of the free monad of a coproduct of signatures. In other
words, we define the following morphism:

freeTToHCod :: (Functor sig1,Monad m,PLModule h)
⇒ (∀x.sig1 (h m x)→ h m x)
→ FreeT sig1 m a→ HCod h m a

freeTToHCod alg f = ...

We show that it is a monad morphism and that the following diagram
commutes for any algebra alg and a generator gen:

FreeT sig1 m a HCod h m a

h m a

freeTToHCod alg

fold gen (liftAlg alg) flip (runCod ◦ runHCod) gen

From the categorical perspective, we fix a monad M, a left
module L with the action δ : ML→ L, and an endofunctor Σ.

Theorem 3. Given a natural transformation α : ΣL → L, the
endofunctor L is a left module over M(ΣM)∗ with the action defined
as 〈〈α,δ 〉〉 : M(ΣM)∗L→ L.

Proof. The result follows from the fact that 〈〈-, -〉〉 is an Eilenberg–
Moore algebra for the monad M(ΣM)∗.

We model freeTToHCod as in the following:

Corollary 4. Given a natural transformation α : ΣL → L, the
morphism [〈〈α,δ 〉〉] : M(ΣM)∗→ L/L is a monad morphism.

Proof. Apply Theorems 1 and 3.

Theorem 5. Given a natural transformation γ : Id→ L (a genera-
tor), the following diagram commutes:

M(ΣM)∗ L/L (L/L)L

M(ΣM)∗L L

[〈〈α,δ 〉〉] (L/L)γ

runM(ΣM)∗γ
〈〈α,δ 〉〉

Proof. Using string diagrams:

〈〈α,δ 〉〉
L

M(ΣM)∗

L γ

L

LL/L

(11)
=

〈〈α,δ 〉〉
L

M(ΣM)∗ γ

L

C. Monad Transformers as Modular Carriers
We show that WrapT a is a modular carrier for any type a, that
is, we show that the modular carrier laws hold. The first law (6)
shows coherence with return (for readability, we omit the WrapT
and unWrapT isomorphisms):

joinl◦ return
= { definition joinl }

join◦ lift ◦ return
= { lift is a monad homomorphism (4) }

join◦ return
= { monad law (1) }

id

The second law (7) is similar, and shows coherence with join:

joinl◦ join
= { definition of joinl }

join◦ lift ◦ join
= { lift is a monad homomorphism (5) }

join◦ join◦ lift ◦ fmap lift
= { monad law (3) }

join◦ fmap join◦ lift ◦ fmap lift
= { lift is natural }

join◦ lift ◦ fmap (join◦ lift)
= { definition of joinl }

joinl◦ fmap joinl
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