
A component-based approach for

managing context information

Davy Preuveneers

Yolande Berbers

Report CW397, December 2004

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



A component-based approach for

managing context information

Davy Preuveneers

Yolande Berbers

Report CW397, December 2004

Department of Computer Science, K.U.Leuven

Abstract

Context-awareness involves any kind of information that may

characterize user-service interactions within a ubiquitous and perva-

sive computing environment. In this report we propose a component-

based approach for the collecting, updating, transforming, reason-

ing, querying and the use of context information. This approach

has resulted in a modular component-based context management

infrastructure, with support for distributed execution and runtime

adaptations of the underlying information processing algorithms.

Keywords : context information management, component-based infrastruc-

ture, ubiquitous computing

AMS(MOS) Classification : Primary : H.3.4, H.3.5 Secondary : C.2.4, C.5.0,

I.2.4.



A component-based approach for managing

context information

Davy Preuveneers and Yolande Berbers

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium,

{davy.preuveneers, yolande.berbers}@cs.kuleuven.ac.be,
http://www.cs.kuleuven.ac.be

Abstract. Context-awareness involves any kind of information that may
characterize user-service interactions within a ubiquitous and pervasive
computing environment. In this report we propose a component-based
approach for the collecting, updating, transforming, reasoning, querying
and the use of context information. This approach has resulted in a mod-
ular component-based context management infrastructure, with support
for distributed execution and runtime adaptations of the underlying in-
formation processing algorithms.

1 Introduction

Context-awareness [1] is being considered as the key challenge for making mobile
devices aware of the situation their users are working and living in. This research
domain focusses on the management of context information in ubiquitous and
pervasive computing environments [2], where people are surrounded by and in-
teracting with many unobtrusive networked devices. These devices will then offer
personalized assistence by adapting the applications’ intended functionalities to
the current context of the user and the device. This context information involves
any kind of information that may characterize the user-service interaction and
includes, among other things, information regarding current location and time,
users’ activities and devices’ capabilities.

This trend towards context-aware architectures within a mobile environment
is the driving force behind applications and services being more sensitive to
user requirements and being less dependent on user attention. A critical success
factor is the support for adaptation as one of the foundations for general intelli-
gence. This adaptation is needed due to applications and services being hosted
on a broad range of hardware with different capabilities, such as PDAs, mobile
phones and smartphones. However, not only do the hosted services need to be
adaptable, the underlying context infrastructure must show some support for
flexibility as well. If not, we risk of having the context infrastructure consuming
all available resources without the device being to able to offer services with a
reasonable quality of service. A component-based development approach [3] is
an ideal design methodology for having flexible adaptation capabilities within



Fig. 1. General overview of a component-based service

applications as it incorporates interconnected components as functional build-
ing blocks. These components can be replaced by other components with similar
behaviour but different runtime requirements, thus providing a way to optimize
resource usage by pluggable components and to adapt to other working con-
ditions. Other advantages of using components include the possibility of doing
live updates using state transfers [4], negotiation and enforcement of resource
contracts [5], distributed execution and relocation.

In section 2 we describe how the context management infrastructure fits
within a component-based service platform. In section 3 we discuss how this con-
text management infrastructure can be implemented using a component-based
approach. This modular composition is responsible for the retrieval and dissem-
ination, the storing, the reasoning and the transforming of context information.
Section 4 provides an overview of related work. We end with conclusions and
future work in section 5.

2 Context-awareness within a component-based service

platform

A context-aware service platform requires the collaboration of, on the one hand,
an infrastructure for managing context information and, on the other hand, the

2



services which will offer personalized assistence through context-based adapta-
tion. In this section we will briefly introduce the concept of component-based
services and give a general overview of how these services interact with the con-
text management system.

In several computer science domains the concept of a service refers to a com-
putational entity that offers a particular functionality to a possibly networked
environment. In contrast to the better known web services, context-aware ser-
vices in mobile computing environments need to support user personalization,
deployment on small embedded systems, user mobility and service relocation.
To accomplish this, a component-based development methodology is being used.
The general overview of a component-based service is shown in Figure 1.

Components [3] provide the functional building blocks of a service and use
their Component Ports as communication gateways to other components. Con-
nectors serve as the message channel between these ports. Contracts [5] define
restrictions or requirements on two or more components or ports. They are used,
for example, to limit or guarantee memory and network bandwidth availability
or to define timing constraints, such as in videostreaming applications which
require a minimal number of frames per second during operation to guarantee
a certain quality of service. The Context Control Block is optionally shared by
many services on the same device and responsible for managing the context in-
formation. This component is the focus of this paper and will be discussed in
section 3.

A service then is a wrapper around these entities with some obligatory man-
agement interfaces and Service Ports as message gateway proxies to internal
Component Ports. Hence, a service acts as a component with a hierarchical
structure. As will be shown in section 3, the Context Control Block in itself is
also composed out of several subcomponents. Regarding the obligatory manage-
ment interfaces, the Service Information Interface provides static semantic and
syntactic information about a service. This information is to be used by other
devices during service discovery. The Service Control Interface is used to man-
age the runtime behaviour of a service, such as the launching, the relocating, the
stopping and uninstalling of a service. The Context Interface is responsible for
the service-specific context interchange and includes, among other things, infor-
mation about the current resources in use. Together with the Context Control
Block, it provides the coupling between the context management algorithms and
the services.

3 Context management

In the following subsections we will discuss how an adaptable component-based
context infrastructure, i.e. the Context Control Block as previously mentioned
in section 2, is able to manage this information. The strength of this component-
based approach relies on the fact that alternative components with similar func-
tion but different runtime requirements can be proposed, or that some compo-
nents can be made optional if appropriate.

3



3.1 Context modeling

Before retrieving, storing and using context information for service adaptation,
we require a uniform and interchangeable context representation. In the Context
Toolkit [6], context is modeled as a set of key/value pairs. More structured
approaches for modeling context have been proposed using RDF [7, 8], UAProf
and CC/PP [9–11], and CSCP [12, 13]. Ontologies, on the other hand, allow the
definition of more complex context models and have been used in several context
modeling approaches [14–16].

The context model we will use here is an extensible context ontology tai-
lored to context-driven adaptation of mobile services [17]. This context ontology
is based on the concepts User {profile, preferences, activities, role}, Platform
{software, hardware, resources, I/O}, Service {syntactic and semantic service
description} and Environment {time, location, temperature, humidity, pressure,
noise, . . . }. See Figure 2 for a general overview of the ontology. This context
model is known on each device so that each device shares the same concepts and
confusion about their semantics is reduced to a minimum.

3.2 Context retrieval

This part of the context management infrastructure is responsible for the gather-
ing of information from data providers on the system itself or in the environment.
Several important aspects with respect to the source of information, the accu-
racy and mechanisms for information retrieval are discussed in the following
subsections.

Sources of information

Sensors: Information might be acquired by sensors attached to the device. This
low-level information is subject to measurement errors and not always imme-
diately usable without transformation to conceptually richer information. The
MTS/MDA Sensor and Data Acquisition Boards from Crossbow Inc. [18] for
wireless sensor networks, for example, provide support for gathering informa-
tion about light, temperature, location, humidity, movement, accoustic ranging,
magnetic fields, etc.

User profiling: Another source of information is acquired through user pro-
filing. Based upon a history of previous user actions and user input with respect
to a certain service, a general profile with user preferences could be determined.
It is clear that this kind of information is error prone and subject to change.

Third parties: Information can also be exchanged with other parties, i.e. de-
vices or information providers, in the neighborhood. This information might be
raw sensor data, or be derived by combining various information. The accuracy
and reliability of this information may or may not be available.

4



Fig. 2. Overview of the context ontology concepts

5



Properties of information

The value of information is not only determined by the information itself, but
also by several information properties.

Accuracy: With sensors as information providers, it is easy to determine the
real value of sensed data, as the granularity of measurement and accuracy is
usually provided by the manufacturer of the equipment. This is not always the
case with profiled information or information provided by third parties. By com-
bining information, small errors might propagate through the derivation chain
and could in the end result into unuseful information.

Reliability: Trust is important when a device is using information provided
by third parties. Well-known devices have already had many occasions to prove
their information to be accurate, whereas unknown devices never had such an
opportunity. If many devices of both the well-known and unknown kind provide
similar answers upon a request for information, trust and thus the reliability of
these new unknown devices increases. In case of conflicts, a large majority of
similar responses or feedback on the correct answer later on might influence the
reliability of an information provider in a negative way.

Age: Information might have been correct before, but might now be too old to
be useful. Therefore, information should be decorated with a time stamp defin-
ing its age. If measuring or deriving information takes to long, we can fall back
on a previous value if the information is not too old.

Mechanisms for information retrieval

There are several mechanisms to receive information, each with their own ad-
vantages and disadvantages:

Push-based Information Retrieval: In this case, the context management
infrastructure does not send any information requests. The information is offered
all the same and the context management infrastructure may decide to store and
use it, or may choose to ignore it. An example of such an information provider
would be a clock, periodically broadcasting time signals to all the services on a
device. This mechanism is well-suited for time-critical services requiring accurate
time information, such as multi-media applications, as they do not need to poll
every time for this information, but it also increases communication overhead
when every component or service is ignoring the broadcasted information.

Pull-based Information Retrieval: With a pull-based mechanism, the con-
text management infrastructure must explicitely send an information request to
a sensor or to third parties in its vicinity. The receiver of the request may per-
form a new measurement or send the latest registered value if still appropriate.

Interval-based Information Retrieval: This is more or less a combination
of the previous mechanisms. The context management infrastructure first sends

6



Fig. 3. Overview of the context retrieval

an information request and a time interval after which it will be periodically no-
tified with information updates until the client requests to end the notification.
This mechanism is the ideal candidate for monitoring purposes, for example to
notify services of increased network bandwidth.

Event-based Information Retrieval: This mechanism uses the publish-
subscribe design pattern to notify interested parties when new information is
available. Polling mechanisms might prove to be very resource consuming when
monitoring a certain information provider which rarely changes. Event-based
notification provides a solution for this problem and decreases unnecessary com-
munication.

Component-based information retrieval modeling

An overview of all components involved with context retrieval is given in Fig-
ure 3. On the one hand, we have several components acting as information
providers. These are split up into Sensors, User Profile and Third Parties cat-
egories. In fact, the User Profile is actually part of our context ontology in
Figure 2. On the other hand, we have components responsible for the filtering
and selecting of the most relevant and accurate information. The Information

7



Fig. 4. Internet Gateway Service and Communication Service

Requester is the initiator of all information requests. In this example, a Clock pe-
riodically sends a time signal and pushes this information to a Timer -component
which is used to enable interval-based Temperature information retrieval. The
difference between the pull-based and event-based retrieval initiated by the In-
formation Requester is not clear in the figure above. However, for event-based
information retrieval the Information Requester submits a subscription message
to the Microphone, so that a notification will be sent when the microphone
detects noise.

Depending on the services that are being hosted and the capabilities of the
device, some components could be reduced in complexity or even eliminated. For
example, instead of comparing the accuracy and reliability, we can simplify the
Accuracy Comparator by only retaining the first answer in a set of responses,
with a possible reduction in accuracy of context information as a result. Suppose
that a service relies only on its own sensors to provide information, then the
Relevance Filter and Accuracy Comparator can be completely removed.

3.3 Context dissemination

Context dissemination is useful for sending context information about a certain
service to other interested third parties. As discussed before, each service has a
specific interface for sharing this information, i.e. the Context Interface. We will

8



discuss how the context information is exchanged by demonstrating it with an
example.

Context dissemination by example

For example, a Communication Service on a PDA with support for text messag-
ing, audio- and videostreaming is interacting with a Internet Gateway Service
being offered on an airplane. See Figure 4 for a simplified overview of both ser-
vices. The type of communication depends on the available bandwidth as the
Internet broadband connection down to earth needs to be shared by several peo-
ple. Every user thus has a certain bandwidth quota. The Communication Service
is subscribed to message events from the Internet Gateway Service that notifies
all clients about a change in maximum bandwidth usage. This message flows
from a Network Monitor Sensor to the Information Requester (not shown in fig-
ure), it then travels on to the Context Interface of the Internet Gateway Service.
The message is then forwarded to the Context Interface of the Communication
Service, after which it is handled by its Information Requester as a message from
a third party. The rest of the processing was discussed in the previous section.

Component-based information dissemination modeling

No new components need to be introduced for the dissemination of context
information, as the relevant components have already been described in the
previous section.

3.4 Context storing

A context repository is responsible for persistency of context information, and
thus can be considered as a small-scale database filled with facts. However, since
mobile devices have a limited storage capacity, special care needs to be taken
to only save up-to-date and relevant information. Another issue is the storing of
data so that queries and information updates can be handled efficiently without
losing the semantics of the data. These topics are discussed in the following
subsections.

Context representation

Context representation involves two aspects. On the one hand, we have the
information itself, for example ‘Age=23’, and on the other hand, the fact that this
information relates to other concepts, for example the name of the person. The
first aspect can be respresented by a set of key/value attributes. The relationships
between this fact and other concepts determine the semantic meaning of this
information. To accomplish this, ontologies are used as knowledge representation.

Hence, context information is represented as a set of ontologies, modeling
the concepts, and an attribute container with a flat list of key/value pairs which
provides facts as an instantiation of concepts in these ontologies. Therefore, each
fact in the attribute container also refers to the concept it instantiates. A special

9



knowledge base stores all ontologies, including the base ontology in Figure 2,
so that knowledge can be expanded with new concepts when necessary. The
advantage of using a separate attribute container is the ease with which this
container can be queried.

History of context information

When the available storage capacity allows it, it might prove useful not only to
save the most recent value of a certain attributes, but to also retain previously
received values. In this way, the history of information can be exploited. Typ-
ical examples would be to track the current location to calculate the travelled
distance or to monitor resource usage in a pay-per-unit billing service. This can
easily be implemented by including a time stamp with each key/value attribute.

Managing outdated and redundant information

As storage capacity is not unlimited, not all information can be retained. The
oldest information is purged first, but the time during which information stays
relevant is not the same for all concepts. Therefore, a possible solution is to
provide for each concept a certain lifetime for which the information is still of
some value. If the information is older than the given lifetime, it will be garbage
collected.

A more complicated problem of information overload is the presence of re-
dundant information. Should information be removed after it has been used to
derive new information or should it be retained for later use? One solution for
this complex problem is to store for each fact the latest occasion of when and
how often it has been used. It is clear that rarely used and old information
is the first candidate to be removed. However, storing extra properties about
facts requires storage space as well, and thus the advantages and disadvantes
should be thoroughly considered before taking any decision how to implement
the removing of old data.

Component-based context repository modeling

The component-based repository implementation is largely based on two differ-
ent container components with their available storage capacity as most important
characteristic. See Figure 5 for an overview. The Information Requester sends
new facts to the Fact Container which holds instantances of concepts from on-
tologies. These ontologies are also forwarded by the Information Requester and
held in the Ontology Container. Two switches are used to enable and disable
history preservation and usage tracking. When low on memory or storage ca-
pacity, another signal is used to trigger the garbage collection of old facts. If
one of the supplemental ontologies, i.e. not the base ontology in Figure 2, is no
longer refered to by a key/value pair, then the ontology can be removed from the
Ontology Container as well. A small instantiation of the Fact Container is given

10



Fig. 5. Overview of context storing

ID Attribute Value Concept ID Time Stamp Last Used Usage Count

1 Name John ID74358 07:53am 11:52am 7

2 Age 53 ID69230 07:54am 10:16am 2

3 Location 50◦52’ N ID38031 02:37pm 02:37pm 119

4◦22’ E

4 Bandwidth 1112 kbps ID16789 02:38pm 02:41pm 37

5 *LIFETIME* 30 sec ID16789 - - -

Table 1. Instantiation of the Fact Container

in Table 1. Properties with respect to accuracy and reliability of information
have been omitted from this table for readability purposes. In this fact table,
the measurement of the current bandwidth usage is specified to be valid for at
most 30 seconds, after which it is invalidated and removed from the fact table.

3.5 Context manipulation

This part of the context management infrastructure is responsible for the trans-
forming and reasoning on context information. It is also responsible for the
decision making and adaptation of services, and thus its main objective is to
make services context-aware.

Context transformation

Context transformation changes the way how certain information is represented.

11



For example, a temperature expressed in degrees Celsius could be transformed
into degrees Fahrenheit or Kelvin using simple mathematical transformation
rules. Similar transformations are possible for converting lengths specified in
English or metric units of length. Classification is another kind of transforma-
tion, where accuracy of information is given up for the sake of more meaningful
information. For example, the geographical location specification in Table 1 us-
ing longitude and latitude coordinates could be replaced by the nearest major
city, in this case Brussels, resulting in a better human understanding of the loca-
tion. Classification however is a more complex transformation as it requires extra
information defining the categories and a general distance function to select the
category which fits best.

Context reasoning

Context reasoning derives new information based on existing facts and deriva-
tion rules. Whereas context transformation changes the way how a concept is
expressed, context reasoning combines derivation rules and facts resulting into
other facts which were only available implicitely. Suppose a calendar service has
information regarding events and activities planned during the day. By combin-
ing this information with the current time, it is possible to derive and predict the
current location of a person. Several expert systems with rule engines (Jess [19],
CLIPS [20]), general purpose inference systems (Prolog’s resolution refutation)
and ontology reasoners (Racer [21], Pellet [22], FaCT [23]) already exist to im-
plement the reasoning part of context manipulation.

Context-based decision making and adaptation

Deriving and transforming context information without actually using it is point-
less. The focus of this part of the context management infrastructure is to make
decisions or take actions automatically without any user intervention. Most of
the decisions and actions will have an effect on the adaptation of services. For
example, consider the Communication Service and Internet Gateway Service in
Figure 4. The Communication Service has the following components:

– Audio Encoder and Decoder : Adaptable components for (de)compressing the
audio stream with high, medium or low quality encoding.

– Video Filter : Optional component for reducing the video frame rate.
– Video Encoder and Decoder : Adaptable components for (de)compressing the

video stream with high, medium or low quality encoding.
– Controller : (de)multiplexes text, speech and video, and sends/receives the

combined data stream.

The video-encoding in the communication service can be adapted to adhere
to certain bandwidth constraints by enabling optional filters or by changing the
compression scheme. The adaptation of this service is based on several trig-
gers being activated. In this case, triggers define different bandwidth conditions
to optimize the quality of service of the communication. The information that

12



Fig. 6. Overview of context manipulation

activates these triggers might come from sensors or be deduced after several
transformation and derivation steps.

Component-based context manipulation

The general overview of the component-based context manipulation is given
in Figure 6. The Context Transformation-component and Context Reasoning-
component are able to derive new facts which are stored in the Fact Container.
The Resource Monitor is responsible, among other things, for enabling garbage
collecting on the Fact Container when running low on storage capacity. The
Context Dissemination-component is responsible for providing the necessary in-
formation to the triggers (not shown in the figure) that activate service adap-
tation. If, for some reason, certain necessary context information is not present
or cannot be derived, then the Context Dissemination-component is also able
to send a service request to third parties by specifying all possible inputs and
required output. For example, we might be able to derive the home location
of a person, but have no way to contact him. By providing name and address
as possible inputs, the Context Dissemination-component could send a service
request to a Yellow Pages-service that is able to provide the necessary infor-
mation. Hence, this is a simple example of context-based service discovery and
interaction.

3.6 Implementation

The component-based management infrastructure has been partially implemented
on top of Draco [24], an extensible runtime system for components designed to

13



be run on embedded devices. The base system is very small and lightweight with
support for extensions such as component distribution, live updates, contract
monitoring and resource management. This runtime environment with exten-
sions provides a unique test platform for validating the proposed concepts in a
pervasive and ubiquitous computing context.

4 Related work

Research on context-awareness has already resulted in several applications [25]
which use a specific type of context information, for example location- and time-
based information. Examples are tour guides such as Cyberguide [26], reminder
applications such as MemoClip [27] and CybreMinder [28], or intelligent envi-
ronments as in Classroom 2000 [29].

More advanced applications are tailored to a specific research approach. For
example, the Context Toolkit [6] is a framework that aims to facilitate the cap-
turing, interpreting and sharing of context information using Context widgets,
similar to GUI widgets which are responsible for the presentation layer of an
application. Service adaptation is not the main focus of this framework.

The CoBrA architecture [30, 15, 31] is a context broker using ontologies that
maintains a shared model of context on the behalf of a community of agents,
services, and devices in a certain environment and provides privacy protection
for the users in the space by enforcing the policy rules that they define. The
advantage of our component-based approach over this architecture, is the better
support for an adaptable context management system. Another difference is that
CoBrA manages the context for all computing entities in a certain environment
instead of each device carrying and managing its own contextual knowledge.
Thus, the main advantage of our approach is the better support of mobility
in ubiquitous and pervasive environments by not being dependent on another
device for managing the context information.

Another service platform with support for context-aware service adaptation
is the platform proposed by Efstratiou et al. in [32]. The authors describe the
architectural requirements for adaptation control and coordination for mobile ap-
plications. In our approach, we have not only shown how services can be adapted,
but also how the driving force behind adaptation, i.e. the context management
system, can also be adapted to different working conditions with support for
distributed execution and relocation.

The M3 architecture [33] is a reactive framework supporting different levels
of context-awareness and adaptation for a variety of mobile work situations.
Services are also component-based. Their context management, however, is less
flexible compared to the plugable and distributed executable component-based
context management system proposed in this report.

14



5 Conclusions and future work

In this report, we have presented a component-based approach for managing
context information. The main advantage is that the management infrastructure
can be adapted to a device’s capabilities or service requirements by enabling
or disabling certain components or specific properties of certain components,
such as the preservation of context history information in the Fact Container -
component.

Another advantage is that these components do not necessarily have to be
executed on the same device. When, for example, available processing power
is very limited, then the necessary facts and ontologies can be sent to a more
powerful device so that the transformation and reasoning on context information
can be delegated.

Future work will focus on the modeling of resource requirements for context
transformations and context derivations, so that a rough estimate of processing
time can be made. This is useful if a user has a preference for receiving a rough
but quick response, or for receiving a more accurate answer for which he is willing
to wait a bit longer.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness, Conference on Human Factors in Computer Systems (CHI2000). (2001)

2. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications (2001) 10–17

3. Urting, D., Van Baelen, S., Holvoet, T., Berbers, Y.: Embedded Software Develop-
ment: Components and Contracts. In: Proceedings of the IASTED International
Conference Parallel and Distributed Computing and Systems. (2001) 685–690

4. Vandewoude, Y., Berbers, Y.: Run-time evolution for embedded component-
oriented systems. In Werner, B., ed.: Proceedings of the International Confer-
ence on Software Maintenance, Montréal, Canada, IEEE Computer Society (2002)
242–245

5. Wils, A., Gorinsek, J., Van Baelen, S., Berbers, Y., De Vlaminck, K.: Flexible
Component Contracts for Local Resource Awareness. In Bryce, C., Czajkowski,
G., eds.: ECOOP 2003 Workshop on resource aware computing. (2003)

6. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction (HCI) Journal 16 (2001) 97–166

7. Beckett, D.: RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/ (2003)

8. Korpipää, P., Mätyjärvi, J., Kela, J., Keränen, H., Malm, E.J.: Managing Context
Information in Mobile Devices. IEEE Pervasive Computing, Mobile and Ubiquitous
Systems 2 (2003) 42–51

9. FORUM, W.: UAProf User Agent Profiling Specification (1999, amended 2001)
10. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.:

Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
1.0. http://www.w3.org/TR/2003/PR-CCPP-struct-vocab-20031015/ (2003)

15



11. Indulska, J., Robinson, R., Rakotonirainy, A., Hendricksen, K.: Experiences in
Using CC/PP in Context-Aware Systems. In Stefani, J.B., Dameure, I., Hagimont,
D., eds.: LNCS 2893: Proceedings of 4th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS2003). Volume 2893 of
Lecture Notes in Computer Science (LNCS)., Paris/France, Springer Verlag (2003)
224–235

12. Buchholz, S., Hamann, T., Hubsch, G.: Comprehensive Structured Context Profiles
(CSCP): Design and Experiences. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops. (2004)

13. Held, A., Buchholz, S., Schill, A.: Modeling of Context Information for Pervasive
Computing Applications. In: Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI2002). (2002)

14. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language
to enable Contextual Interoperability. In Stefani, J.B., Dameure, I., Hagimont,
D., eds.: LNCS 2893: Proceedings of 4th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS2003). Volume 2893 of
Lecture Notes in Computer Science (LNCS)., Paris/France, Springer Verlag (2003)
236–247

15. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Comput-
ing Environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review (2003)

16. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model
in Intelligent Environments. In Proceedings of Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, San Diego, California, USA
(2004)

17. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for Ambient Intelligence. In: Proceedings of the Second European
Symposium on Ambient Intelligence, Springer (2004)

18. Crossbow Inc.: Smarter Sensors for Ubiquitous Computing.
http://www.xbow.com/Industry solutions/Ubiquitous Computing.htm (2004)

19. Sandia National Laboratories: Jess, the Rule Engine for the Java Platform.
http://herzberg.ca.sandia.gov/jess/ (2004)

20. Riley, G.: CLIPS: A Tool for Building Expert Systems.
http://www.ghg.net/clips/CLIPS.html (2004)

21. Haarslev, V., Moller, R., Wessel, M.: Racer, Semantic Middleware for In-
dustrial Projects Based on RDF/OWL, a W3C Standard. http://www.sts.tu-
harburg.de/˜r.f.moeller/racer/ (2004)

22. Mindswap: Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/index.shtml
(2003)

23. Horrocks, I.: The FaCT System. http://www.cs.man.ac.uk/˜horrocks/FaCT/
(2003)

24. Vandewoude, Y., Rigole, P., Urting, D., Berbers, Y.: Draco : An adaptive runtime
environment for components. Technical Report CW372, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2003)

25. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College
(2000)

26. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

16



27. Beigl, M.: MemoClip: A location-based remembrance appliance. Personal Tech-
nologies 4 (2000) 230–234

28. Dey, A.K., Abowd, G.D.: CybreMinder: A Context-Aware System for Supporting
Reminders. In: HUC. (2000) 172–186

29. Abowd, G.D.: Classroom 2000: An experiment with the instrumentation of a living
educational environment. IBM Systems Journal 38 (1999) 508–530

30. Chen, H.: An intelligent broker architecture for context-aware systems.
http://cobra.umbc.edu/ (2003)

31. Chen, H., Finin, T., Joshi, A.: Using OWL in a Pervasive Computing Broker (2003)
32. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An Architecture for the Ef-

fective Support of Adaptive Context-Aware Applications. In: Proceedings of 2nd
International Conference in Mobile Data Management (MDM‘01). Volume Lecture
Notes in Computer Science Volume 1987., Hong Kong, Springer (2001) 15–26

33. Indulska, J., Loke, S., Rakotonirainy, A., Witana, V., Zaslavsky, A.: An Open Ar-
chitecture For Pervasive Systems. In: Proceedings of the Third IFIP TC6/WG6.1
International Working Conference on Distributed Applications and Interoperable
Systems, Kluwer (2001) 175–187

17


