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Abstract

Let {a,}52 ; be a sequence of points in the open unit disk in the complex plane and let

n -
Bp=1 and B,(2)= H% ak;z’ n=12 ...,
lak| 1 —agz
k=0
(% = —1 when o = 0). We put £ = span{B,, : n = 0,1,2,...} and we consider the following

”moment” problem:

Given a positive-definite Hermitian inner product (-,-) in £, find all positive Borel measures v on
[—7, ) such that

(f.9) = / He)g@@du(8) for f.g€ L.

We assume that this moment problem is indeterminate. Under some additional condition on the «,,
we will describe a one-to-one correspondence between the collection of all solutions to this moment
problem and the collection of all Carathéodory functions augmented by the constant oo.
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1 Introduction

As in [1] a moment problem is called indeterminate if it has more than one solution. In [1] it
is shown that if the Hamburger moment problem is indeterminate, then there is a one-to-one
correspondence between the collection of all the solutions to this moment problem and the
collection of all Nevanlinna functions augmented by the constant co. See [1, Theorem 3.2.2].
The purpose of the present paper is to prove a similar statement for a rational moment problem
that arises in the study of certain rational functions with poles outside the closed unit disk in
the extended complex plane. A one-to-one correspondence between the collection of all the
solutions of our rational moment problem and the collection of all the Carathéodory functions
and the constant oo will be established.

Let
T={z€C:|z|=1}, D={ze€C:|z| <1}, E={zeC:|z| > 1},
G={z€eC:Rz<0}, H={2€C:Rz>0}, I={2€C:Rz=0}.
Let a,,, n=10,1,2,... be given points in D with ay = 0 and let

Dy={z€D:z2#0q;, 7=0,1,2,...} and Ey={zcE:z#1/a;, j=1,2,...}.
The Blaschke factors (,, are given by

Oy oy — 2
=M T E 01,2,
la,| 1 —an2

Cn(2)

where by convention
Qp,

=—1 when «,=0.
[e™

The (finite) Blaschke products are
B,(z) = ﬁ G(z), n=1,2,... and By(z)=1.
k=1
We define the linear spaces £,, n =0,1,2,... and L by
L, =span{B,, :m=0,1,...,n} and L= Ej L,.

n=0

Clearly L,, consists of the functions that may be written as

where
n

ma(z) = [[(1 —axz), n=1,2,... and mo(z) =1
k=1
and p, belongs to II,,, the set of polynomials of degree at most n. The substar conjugate f, of
a function f is defined as

fu(z) = f(1/2).



For f € L, \ L,,_1 the superstar conjugate f* will be

f1(2) = Bu(2)f.(2).
If f €Ly, then f* = f.. Furthermore we assume that u is a positive Borel measure on [—, )
with pu([—m, 7)) = 1. Then

(£.9) = [ Fe)g(@du() for figeL

defines a Hermitian positive-definite inner product in L.

In this paper we consider the following

Definition 1.1 (MOMENT PROBLEM) Given the inner product (-,-) in L, find all posi-
tive Borel measures v on |[—m, ) such that

<ﬁ@=/}@%ﬂﬂwm® for f,gecL.

Remark 1.1 This formulation of the moment problem is equivalent to the following one:
“Given a positive-definite measure p on [—m, ), find all positive Borel measures v on [—m, )
such that

/BJWMM@z/BJﬂMW%,nEZ,meB%:BMW

Note that this reduces to the classical trigonometric moment problem if all oy = 0.
It is evident that p is a solution to this moment problem.

Throughout this paper we assume that this moment problem is indeterminate. Under an addi-
tional condition on the «,, n = 0,1,2, ..., we will show that there is a one-to-one correspon-
dence between the collection of all solutions to this moment problem and the collection of all
Carathéodory functions augmented by the constant co.

The collection of all Carathéodory functions will be denoted as C. Recall that f € C if and only
if f is analytic in D and f(D) Cc HUL

Remark 1.2 The assumption that our moment problem is indeterminate implies that it is not
a generalization of the trigonometric moment problem which has always a unique solution.

A characterization in terms of Nevanlinna functions of the solutions with support in R of
an indeterminate (rational) moment problem related to rational functions with poles in the
extended real line is treated in [2].



2 Orthogonal rational functions

In our approach orthogonal rational functions and the associated functions will play an impor-
tant role. Let the sequence {¢,}5°, in £ be obtained by orthonormalization of the sequence
{B,}>2, with respect to the inner product (-,-) on L, i.e.

¢n €L, and (¢n,Pn) =1, n=0,1,2,...

and
(fydn) =0 for fe€L,q, n=12 ...

Each ¢, can be written as
Dn(2) = 3 b Bi(2).
k=0
We assume that the ¢, are chosen such that b > 0.

Using the uniqueness of the reproducing kernel
> bk(2)ok(w)
k=0

for the inner product space £,, it can be shown, see for instance [5], that the following Christoffel-
Darboux formula holds
* T IURY n—1
" (2)k(w) — dn(2)Pn(w
GG — ) s o
L= G(2)Ga(w) &

The associated functions 1, are defined by

™

1 i0
%@:—wy<%w=—£@m>w@»
and i
n(2) = zfz[%(z)—%(t)]du(e), n=1,2 .. with t=c"

(This definition and formula (2.2) below do not depend on the measure p provided that it is
a solution to the moment problem.) Obviously ¢, € L, for n = 0,1,2,.... For the superstar

conjugates of the 1, we have
. 1
o(2) = ——5
bo

and

@z};(z):ﬂfz lﬁz(g; G (1) — ¢ ()| du(0), n=1,2,... with t=e?  (22)

See [3]. The pairs (¢,(2),¢:(2)) and (¢¥,(z), =¥ (z)) satisfy the same recurrency relations.

Using the analogue of the determinant formula and the analogue of Green’s formula for this



recurrency we obtain the following relations between the functions ¢,, ¢}, ¥, and v which

will be used in the present paper.

B(n(2) + a2 (z) = L1l Z2Bnlz)

l—0,z z—a,

on(0a () + du(n(w) 2 R
1 = Gn(2)Gn(w) Tw kz:%m( J¥i(w),

Vr(0) — Yu(w)

and

[V (2) + 56 (2)* = [Yn(2) = sdn(2)* | 2(s+35) K=
1—[Ga(2)]? L=z
Proofs of (2.3)-(2.6) can be found in [4].

If v is a finite positive Borel measure on [—m, ) then we write

T " ‘
F,(2) = i Zdu(@), where t=e".
t—=z

—Tr

kE_: b (2) — sow(2)]*.

(2.3)

(2.4)

(2.5)

(2.6)

Clearly F, is an analytic function on C \ T. In fact F, is analytic outside the support of the
measure on T which corresponds to v by the mapping 6 — ¢. If v, and v, are finite positive
Borel measures on [—m,7) and F,,(z) = F,,(z) for z € C\ T then v; = 5. Sometimes the
function F), is called the Riesz-Herglotz transform of the measure v. Regarding this transform

we mention the following special case of [5, Theorem 6.2.1].

Proposition 2.1 If v; and vy are positive Borel measures on [—m,m) with vi([—m, 7)) =

vo([—m, 7)) =1, then

T ™

if and only iof

where g is analytic in D and g(0) = 0.

In the present paper we consider the expression

for z, 7 € C.



If 7 € T, then there exists a (discrete) positive Borel measure p,, which solves the ”truncated”
moment problem in £,,_q, i.e.

| 190 (0) = [ F0g@dn0), (¢ =€), for fige Lo
such that
F, (2) =R,(z,7) for 2e€C\T.
See [3].

In [4] it is shown that for fixed z € Dy U E the values of
s = R,(z,71)

describe a circle K, (2) if 7 varies in T. The equation of K,(z) is

n-l 2(s+5s
5 (2) - son(t = 20HF) 27)
k=0 12|

and the corresponding closed disk A, (z) is given by the equation
nd 2(s+5s
D |Un(z) = sw(2)|* < ( 2) (2.8)
k=0 11|

The interior of A, (z) will be denoted as A%(z). It follows from (2.8) that A,(z) D A,.1(2),
n=1,2,..., so the disks A, (z) are nested. Equation (2.8) also implies that

A (z) CH if zeD

and
Ay(z) G if zeR,.

3 The moment problem

Since we assume that our moment problem is indeterminate, we have

o

> (1= |aw]) < oo (3.1)

n=0

Indeed, if this series would diverge, then by [5, Theorem 7.1.2] and a density argument in C(T),
the moment problem would have only one solution. (Notice that there is a misprint in this
theorem: 1 < p < oo must be 1 < p < 00.) See also [5, Chapter 10]. Evidently (3.1) implies
that {a, : n € N} is a discrete subset of D and that each «, occurs only a finite number
of times in the sequence {a,}5%,. Let S be the set of accumulation points of {a, : n € N}.



Then S is a closed subset of T. In [4] it is shown that the series 300 [dn(2)[%, 3502, |05 (2) %,
2o [n(2)|? and 2%, |7 (2)[* converge uniformly on compact subsets of Dy U Eq. However,

the argument of the proof of [4, Theorem 6.2] also gives uniform convergence of these series on

compact subsets of Dy UEy U (T \ 5). In the remaining part of this paper we assume that

S #£T.

For fixed w € C we define

1- Cn(w)Cn(z) 7
B (s — P0)0n(z) + )65 (2)
! 1= Gu(w)Ca(2)
Co(z) = Dn(W)n(2) + ¢ (W) (2)
! 1= Gu(w)Ga(2) ’
Dy (2) — Bel)6u(2) = G w)65(2)
! 1= Gu(w)Ga(2)
By (2.1), (2.4) and (2.5) we have
-3 Be)
B, (z) =
C’n(z) B —wz
-
These functions also may be written as
)= 22T D) =2

where a,,,d, € II,,_1, the set of polynomials of degree at most n — 1, and

bn(2)

(1 —w2)m,_1(2)’

Cu(z) = cn(2)

(1 —w2)m_1(2)’

B,(z) =

where b, ¢, € I1,,. The coefficients of the polynomials a,, b,, ¢,, d,, depend on w.

In the sequel we assume that w € T\ S. The condition w € T is needed to get the right mapping
properties as used for example in (3.9) and the condition w ¢ S is needed to get the convergence
of series of rational functions in w such as the series 3 |¢p(w)|? is the next paragraph.



From the uniform convergence of the series 3°0° o |6, (2)[%, 200 |05 (2)[2, 350% [¥n(2)]? and

> o |1 (2)|* on compact subsets of Dy UE U (T\ S) it follows immediately that the functions
A, (2), Bu(2), Cy(z) and D, (z) converge uniformly on compact subsets of Dy UE, U (T \ S) as
n — oo. For e.g. B, we have

Bun(2) — Ba(2)| = |le_ Te@)én(2)] < mz \wk<w>\2;"z_ 6n(2) 2

s0 {By(2)}22, is a uniform Cauchy sequence on compact subsets of DyUE U (T\ .S). Clearly the
limits A(z), B(z), C(z) and D(z) of A,(z), Bn(z), Cyn(2) and D, (2) respectively are analytic

As

[1 = Calw) ) n(2)]*[An(2) Du(2) — Bn(2)Ca(2)]
=[5 (w)n(w) + 47 (W) b (w)][¢7,(2)10n(2) + 5, (2) P (2)]

it follows from (2.3) and

(1 — lon[*)(A — w2)

L= Gu(w)Ga(2) = (1 — anw)(1 — anz)

that
B, (w)zB,(2)(1 — a,w)(1 — anz)'

An(2)Dp(2) — Ba(2)Cr(2) = —4

(@ — @) (2 — o) (1 —wz)?
As w € T, this becomes

4an(w)an(z)(w —ay)(1— oTnz)'

(1= @) (= — an)(w — 27

An(2)Dy(2) — Bu(2)Ch(z) = — (3.2)

This implies that the mapping
Ap(2)t+ Cp(2)
Bh(2)t 4+ D,(z)
is a well-defined linear fractional transformation if z € Dy and w € T.

Some simple calculations yield

e Talt + ) T}t — Ga0) .
A+ Cnle) = @) V’”” D@+ om(@) )]
and
o Bt e ) [, -G
Bule)t+ Do) = T e ) W )t @t + o) >]'
Set
B 1 R (0 e ()
" = Tt + du() S — o)



Then

B, (2)t + D,(2) - dn(2) + 705 (2) = Bn(z,7) =5 (3.3)
and
L @) —giw) _ vu(w) =) 1
b n(w)T + ¢5(w) Pn(w) + L% (w) R 7?)' (3.4)

We have already observed that 7 +— s = R, (2, 7) maps T onto K,,(2) if z € Dy UE,. From (2.3)
we conclude that 7 — s is a well-defined linear fractional transformation if z € Dy U T. We first
consider the case z € Dy. Then (2.6) in the form

[Yn(2) + 505 (2)° — [¥n(2) — 56a(2)]> _ = 2(s +53)
1— [Ca(2)]2 Z [ (2) — sdp(2)]> — P (3.5)
and the equations for K, (z) and A,(z) imply
TED <= s€ (CU{oo})\ Ay(2),
TeT < s e K,(2), (3.6)

TeEEU{0} < s Al(z).

Now let z € T. Then we multiply (3.5) with z replaced by v, v € Dg, by 1 — |[v|? and let v — 2
to obtain

1 =@z {[v5(2) + 56, (2)]* = [hn(2) — su(2)[} = —2(s +3). (3.7)

This yields

TeED <= s e,
T€T <= selU{oo}, (3.8)

TeEU{x} <= s H.

Notice that in this case s = 0o gives ¢, (2) + 7¢}(z) = 0 while |¢,(2)| = |9k (2)] # 0 by (2.1),
and hence 7 € T. Recall that w € T\ S. Thus (3.8) implies that for 7 and ¢ in (3.4) we have
TeED<—=teqG,
TeT <= teluU{oo}, (3.9)
TeEU {0} <= tecH.



Now let s and ¢ be as in (3.3). If z € Dy, combination of (3.6) and (3.9) gives

teG << se (CU{oo})\ Aul2),
telU{oo} <= s e K,(2), (3.10)

teH < s e A(2).

If 2z € T we get
teG <= se@,
telU{oo} <= selU{o0},
teH < seH.

Notice hat K, (z) C H if z € Dy. Therefore

maps Dy into H if t e HU L.

As we will establish a one-to-one correspondence between Carathéodory functions and solutions
to the moment problem we consider two subsections I and II. In I we start from a Carathéodory
function h € C or from an infinite constant. If h € C we show that there exists a unique solution
v to the moment problem with

F,(z) = : (3.11)

The infinite constant corresponds to F,(z) = gz%

v of the moment problem and we show that there is a unique h € C such that (3.11) holds or

F,(z) = 28 Combination of I and II will lead to our main result.

Conversely in II we begin with a solution

I. Let h € C. Put

An(2)h(2) + Cy(2)

Bn(2)h(z) + Dy (2)

for z € Dy. Then F,, maps Dy into H. If we multiply numerator and denominator of F,, by
(1 —wz)m,_1(z) which is non-zero in I, we obtain

Fu(z) =

(1 —wz)an(2)h(2) + cu(2)

Fal2) = b (2)h(2) + (1 — w2)d,(2)

So F), is a quotient of analytic functions in D and hence F;, is meromorphic in D. Since Dy is
dense in D and F,,(IDy) is contained in the half-plane HUI, F,, must be analytic in ID. Therefore
F,ecC.

10



Hence by the Riesz-Herglotz representation theorem for Carathéodory functions there is a
positive Borel measure v, on [—m, ) and a real constant ¢, such that

F.(z) =ic, + / ii_zdun(H), (t = e").

See [1] or [5]. On the other hand we have
Fo(z) = Ru(2, 7 (h(2))

and in particular

Y0 (0) = 7 ((0)) 97 (0)

¢ (0) + 7 (h(0)) 97 (0)

By orthogonality of the ¢,, it follows from the definition of ¢, and from (2.2) that

Fu(0) = R (0,7(h(0))) =

Ua0) = [[164(0) = 6u(e”)]dp(6) = 64(0)

and
i

00 = [ g ) 0| o) = 510

if n > 1. Hence F,(0) = 1 if n > 1 and from the representation of F,, we get ¢, = SF,(0) =0
and v, ([—m, 7)) = F,(0) = 1. Hence

Fo(z) = / v (6) = F (),

—Tr

which is the Riesz- Herglotz transform of the measure v,.

For every 7 = 7,(t) € T there is a measure j, = i, (-, 7,(t)) such that F), (2) = R,(z, (1))
which solves the truncated moment problem in £,,_1. As 7,(¢) € T if and only if t € TU {o0},
we may take ¢t = oo to obtain the measure (%) = p,(-,7(c0)) solving the truncated moment
problem in £,,_; and such that

F/LS))(Z) = R, (z, T (00))

We will use the measure p(?) to show that under a certain condition on the function h, also v,
solves the truncated moment problem in £,,_;. To that end we consider F,,(z) — E o (2). Using
(2.3) we get after some tedious calculations

Fo(z) — Fu5LO> (2) = gn((jzéz))
) —
)

An(2) Dy (2 B (2)Cn(2
B,(2)[Bn(2)h(2) + D, (2)
Bn( )2B,, z)(w —
(1 —a,w)(z —ap)(w — 2)?B

S

=4




n(2 b,(z d,(z
(1= @w)(z = an)(w = 2)* (1-— wzgﬂn_l(z) (1-— wzgﬁ)n_l(z)h(z) 7Tn_<1(,)2)
2
= Bt ) 1 T
Hence
F.(z) — FM%O)(Z) =zB,_1(2)Jn_1(2) (3.12)
where J,,_; is a rational function and F,(z) — F#S))(z) is analytic in D.
Now we assume that the function h satisfies
wby, (ag)h(ag) + (w — ag)dp(ag) #0 for k=0,1,...,n— 1. (3.13)

Remember that ay = 0. Since the numerator ¥, (w)d,(z) — ¥} (w)ei(z) of B,(z) is para-
orthogonal, it has its zeros in T. See [4]. Notice that |1, (w)| = [} (w)| # 0 for w € T. Hence
b,(z) # 0 for z € D. Therefore the assumption (3.13) implies that .J,_; will not have poles at
the points ag, a1, ..., a,_1. But then

Fn(z) — F,U»£7.0) (Z)

Ina(2) = 2B,-1(2)

is analytic in . Since F, = F,, it follows from (3.12) and Proposition 2.1 that v, and p(*
induce the same inner product on £,_;. Thus under the condition (3.13) also v, is a solution
to the truncated moment problem in £,,_;.

Suppose now that h is an arbitrary Carathéodory function. Then we take v, € R, v, > 0 with
Yn — 0 as n — oo such that (3.13) is satisfied for all n if & is replaced by h,(z) = h(2) + Yn.
It is clear that h, € C and that h, — h as n — oo. By the foregoing for each n there exists a
solution v, of the truncated moment problem in £,_; such that

A, (2)hn(2) + Cp(2)
B, (2)hy(2) + Dy (2)

F, (z) =

By the argument given in [4], applying Helly’s theorems on the non-decreasing functions 6 —
vn([—7,0)), we obtain a subsequence {v,, }32; of {1, }°°, such that v = limy_., vy, is a solution
to the (full) moment problem and F,, (z) converges to F,(z). On the other hand

A (), (2) + Cny (2)  A(R)D(2) + C(2)
By, (2)hn (2) + D (2)  B(2)h(2) + D(2)

F,,, (2) =

as k — oo,

for all z € Dy. Hence for each h € C there is a solution v to the moment problem such that
(3.11) is satisfied. Obviously v is unique.

If h = oo we apply Helly’s theorems on the measures p(”) and we get a subsequence {u;i)}zozl

converging to a positive Borel measure v satisfying F,(z) = % for z € Dy.

12



I1. Assume that v is a solution to the moment problem. For z € Dy define h,(z) by

 An(2)ha(2) + Cu(2)
B = B o) 1 D)’

—~

—~

N

B Dn(2)F,(2) = Cu(2) (1 —=w2)dn(2)F,(2) — cu(2)

" B RRG A T b(RG) - (- w7 ()

Since F, is analytic in D and a,, b,, ¢,, d, are polynomials, h, may be considered to be
meromorphic in D. From (3.10) and the fact that F,(z) € A, (2) if z € Dy, see [4], we conclude
that h,(z) € IU{co} UH if z € Dy. As Dy is dense in D it follows that h,, is analytic in D and
that h, (D) € TUH. Hence h,, € C.

Clearly h,(z) converges to
D(z)Fy,(z) = C(2)
" =BG - AG)

in Dy as n — oo, where A, B, C, D are analytic in D).

Suppose that h is not an infinite constant. As h(IDy) C TUH, h must be analytic in Dy, and for
the same reason it follows from the Casorati-Weierstrass theorem that the singularities of i in
D must be removable. So h is extendable to an analytic function in D which is again denoted
as h. But then h € C. Hence given v there is a unique h € C such that

A(2)h(z) +C(2)
F,(z) = B()h(z) £ D(2) for =z € Dy,

or h = oo in which case we have F,(z) = 28 for z € Dy.

Combination of the results in I and II leads to

Theorem 3.1 Assume that the moment problem as defined in section 1 is indeterminate. Sup-
pose that the set S of all accumulation points of {a,, : n € N} satisfies S # T and let A, B, C,
D be the locally uniform limits in Dy of the rational functions A, B,, C,, D,, with parameter
w e T\ S. Then the formula

Ft+2z A(2)h(z) + C(2)

dv(0) = (t=¢€"), zcDy,

t— 2z

—T

establishes a one-to-one correspondence between the collection of all solutions v to the moment
problem and the collection of all Carathéodory functions h augmented by the constant oc.

Remark 3.2 If in Theorem 3.1 the function h is a constant in I U {oo}, then the measure v

is a N-extremal solution to the moment problem and every N-extremal solution is obtained in
this way. See [6].

13
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