An indeterminate rational moment problem and Carathéodory functions

A. Bultheel ${ }^{\mathrm{a}, 1}$ P. González-Vera ${ }^{\mathrm{b}, 2}$ E. Hendriksen ${ }^{\mathrm{c}}$ O. Njåstad ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Computer Science, K.U.Leuven, Celestijnenlaan 200 A, 3001 Heverlee, Belgium.
${ }^{\mathrm{b}}$ Department of Mathematical Analysis, La Laguna Univ., 38271-La Laguna, Tenerife, Spain.
${ }^{\text {c }}$ Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.
${ }^{\mathrm{d}}$ Department of Math. Sc., Norwegian Univ. of Science and Technology, N-7491 Trondheim, Norway Dedicated to Professor Claude Brezinski on the occasion of his retirement.

Abstract

Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in the open unit disk in the complex plane and let

$$
\mathbb{B}_{0}=1 \quad \text { and } \quad \mathbb{B}_{n}(z)=\prod_{k=0}^{n} \frac{\overline{\alpha_{k}}}{\left|\alpha_{k}\right|} \frac{\alpha_{k}-z}{1-\overline{\alpha_{k}} z}, \quad n=1,2, \ldots
$$

${ }_{\text {" }}\left(\frac{\overline{\alpha_{k}}}{\alpha_{k} \mid}=-1\right.$ when $\left.\alpha_{k}=0\right)$. We put $\mathcal{L}=\operatorname{span}\left\{\mathbb{B}_{n}: n=0,1,2, \ldots\right\}$ and we consider the following "moment" problem:

Given a positive-definite Hermitian inner product $\langle\cdot, \cdot\rangle$ in \mathcal{L}, find all positive Borel measures ν on $[-\pi, \pi)$ such that

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \nu(\theta) \quad \text { for } \quad f, g \in \mathcal{L}
$$

We assume that this moment problem is indeterminate. Under some additional condition on the α_{n} we will describe a one-to-one correspondence between the collection of all solutions to this moment problem and the collection of all Carathéodory functions augmented by the constant ∞.

Key words: orthogonal rational functions, moment problem, Carathéodory function. 2000 MSC: 30E05

[^0]
1 Introduction

As in [1] a moment problem is called indeterminate if it has more than one solution. In [1] it is shown that if the Hamburger moment problem is indeterminate, then there is a one-to-one correspondence between the collection of all the solutions to this moment problem and the collection of all Nevanlinna functions augmented by the constant ∞. See [1, Theorem 3.2.2]. The purpose of the present paper is to prove a similar statement for a rational moment problem that arises in the study of certain rational functions with poles outside the closed unit disk in the extended complex plane. A one-to-one correspondence between the collection of all the solutions of our rational moment problem and the collection of all the Carathéodory functions and the constant ∞ will be established.

Let

$$
\begin{array}{ll}
\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}, & \mathbb{D}=\{z \in \mathbb{C}:|z|<1\},
\end{array} \quad \mathbb{E}=\{z \in \mathbb{C}:|z|>1\}, ~ 子\left\{\begin{array}{l}
\mathbb{G}=\{z \in \mathbb{C}: \Re z<0\}, \\
\mathbb{H}=\{z \in \mathbb{C}: \Re z>0\},
\end{array} \mathbb{I}=\{z \in \mathbb{C}: \Re z=0\} .\right.
$$

Let $\alpha_{n}, n=0,1,2, \ldots$ be given points in \mathbb{D} with $\alpha_{0}=0$ and let

$$
\mathbb{D}_{0}=\left\{z \in \mathbb{D}: z \neq \alpha_{j}, j=0,1,2, \ldots\right\} \quad \text { and } \quad \mathbb{E}_{0}=\left\{z \in \mathbb{E}: z \neq 1 / \overline{\alpha_{j}}, j=1,2, \ldots\right\}
$$

The Blaschke factors ζ_{n} are given by

$$
\zeta_{n}(z)=\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \cdot \frac{\alpha_{n}-z}{1-\overline{\alpha_{n}} z}, \quad n=0,1,2, \ldots
$$

where by convention

$$
\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|}=-1 \quad \text { when } \quad \alpha_{n}=0
$$

The (finite) Blaschke products are

$$
\mathbb{B}_{n}(z)=\prod_{k=1}^{n} \zeta_{k}(z), \quad n=1,2, \ldots \quad \text { and } \quad \mathbb{B}_{0}(z)=1
$$

We define the linear spaces $\mathcal{L}_{n}, n=0,1,2, \ldots$ and \mathcal{L} by

$$
\mathcal{L}_{n}=\operatorname{span}\left\{\mathbb{B}_{m}: m=0,1, \ldots, n\right\} \quad \text { and } \quad \mathcal{L}=\bigcup_{n=0}^{\infty} \mathcal{L}_{n} .
$$

Clearly \mathcal{L}_{n} consists of the functions that may be written as

$$
\frac{p_{n}(z)}{\pi_{n}(z)}
$$

where

$$
\pi_{n}(z)=\prod_{k=1}^{n}\left(1-\overline{\alpha_{k}} z\right), \quad n=1,2, \ldots \quad \text { and } \quad \pi_{0}(z)=1
$$

and p_{n} belongs to Π_{n}, the set of polynomials of degree at most n. The substar conjugate f_{*} of a function f is defined as

$$
f_{*}(z)=\overline{f(1 / \bar{z})}
$$

For $f \in \mathcal{L}_{n} \backslash \mathcal{L}_{n-1}$ the superstar conjugate f^{*} will be

$$
f^{*}(z)=\mathbb{B}_{n}(z) f_{*}(z)
$$

If $f \in \mathcal{L}_{0}$, then $f^{*}=f_{*}$. Furthermore we assume that μ is a positive Borel measure on $[-\pi, \pi)$ with $\mu([-\pi, \pi))=1$. Then

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \mu(\theta) \quad \text { for } \quad f, g \in \mathcal{L}
$$

defines a Hermitian positive-definite inner product in \mathcal{L}.
In this paper we consider the following
Definition 1.1 (MOMENT PROBLEM) Given the inner product $\langle\cdot, \cdot\rangle$ in \mathcal{L}, find all positive Borel measures ν on $[-\pi, \pi)$ such that

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \nu(\theta) \quad \text { for } \quad f, g \in \mathcal{L} .
$$

Remark 1.1 This formulation of the moment problem is equivalent to the following one: "Given a positive-definite measure μ on $[-\pi, \pi)$, find all positive Borel measures ν on $[-\pi, \pi)$ such that

$$
\int_{-\pi}^{\pi} \mathbb{B}_{n}\left(e^{i \theta}\right) d \mu(\theta)=\int_{-\pi}^{\pi} \mathbb{B}_{n}\left(e^{i \theta}\right) d \nu(\theta), \quad n \in \mathbb{Z}, \quad \text { where } \mathbb{B}_{-n}=\mathbb{B}_{n *}
$$

Note that this reduces to the classical trigonometric moment problem if all $\alpha_{k}=0$.
It is evident that μ is a solution to this moment problem.
Throughout this paper we assume that this moment problem is indeterminate. Under an additional condition on the $\alpha_{n}, n=0,1,2, \ldots$, we will show that there is a one-to-one correspondence between the collection of all solutions to this moment problem and the collection of all Carathéodory functions augmented by the constant ∞.

The collection of all Carathéodory functions will be denoted as \mathcal{C}. Recall that $f \in \mathcal{C}$ if and only if f is analytic in \mathbb{D} and $f(\mathbb{D}) \subset \mathbb{H} \cup \mathbb{I}$.

Remark 1.2 The assumption that our moment problem is indeterminate implies that it is not a generalization of the trigonometric moment problem which has always a unique solution.

A characterization in terms of Nevanlinna functions of the solutions with support in \mathbb{R} of an indeterminate (rational) moment problem related to rational functions with poles in the extended real line is treated in [2].

2 Orthogonal rational functions

In our approach orthogonal rational functions and the associated functions will play an important role. Let the sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ in \mathcal{L} be obtained by orthonormalization of the sequence $\left\{\mathbb{B}_{n}\right\}_{n=0}^{\infty}$ with respect to the inner product $\langle\cdot, \cdot\rangle$ on \mathcal{L}, i.e.

$$
\phi_{n} \in \mathcal{L}_{n} \quad \text { and } \quad\left\langle\phi_{n}, \phi_{n}\right\rangle=1, \quad n=0,1,2, \ldots
$$

and

$$
\left\langle f, \phi_{n}\right\rangle=0 \quad \text { for } \quad f \in \mathcal{L}_{n-1}, \quad n=1,2, \ldots
$$

Each ϕ_{n} can be written as

$$
\phi_{n}(z)=\sum_{k=0}^{n} b_{k}^{(n)} \mathbb{B}_{k}(z)
$$

We assume that the ϕ_{n} are chosen such that $b_{n}^{(n)}>0$.
Using the uniqueness of the reproducing kernel

$$
\sum_{k=0}^{n} \phi_{k}(z) \overline{\phi_{k}(w)}
$$

for the inner product space \mathcal{L}_{n} it can be shown, see for instance [5], that the following ChristoffelDarboux formula holds

$$
\begin{equation*}
\frac{\phi_{n}^{*}(z) \overline{\phi_{n}^{*}(w)}-\phi_{n}(z) \overline{\phi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}}=\sum_{k=0}^{n-1} \phi_{k}(z) \overline{\phi_{k}(w)} . \tag{2.1}
\end{equation*}
$$

The associated functions ψ_{n} are defined by

$$
\psi_{0}(z)=-\frac{1}{b_{0}^{(0)}}, \quad\left(\psi_{0}(z)=-\int_{-\pi}^{\pi} \phi_{0}\left(e^{i \theta}\right) d \mu(\theta)\right)
$$

and

$$
\psi_{n}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z}\left[\phi_{n}(z)-\phi_{n}(t)\right] d \mu(\theta), \quad n=1,2, \ldots \quad \text { with } \quad t=e^{i \theta} .
$$

(This definition and formula (2.2) below do not depend on the measure μ provided that it is a solution to the moment problem.) Obviously $\psi_{n} \in \mathcal{L}_{n}$ for $n=0,1,2, \ldots$. For the superstar conjugates of the ψ_{n} we have

$$
\psi_{0}^{*}(z)=-\frac{1}{b_{0}^{(0)}}
$$

and

$$
\begin{equation*}
\psi_{n}^{*}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z}\left[\frac{\mathbb{B}_{n}(z)}{\mathbb{B}_{n}(t)} \phi_{n}^{*}(t)-\phi_{n}^{*}(z)\right] d \mu(\theta), \quad n=1,2, \ldots \quad \text { with } \quad t=e^{i \theta} \tag{2.2}
\end{equation*}
$$

See [3]. The pairs $\left(\phi_{n}(z), \phi_{n}^{*}(z)\right)$ and $\left(\psi_{n}(z),-\psi_{n}^{*}(z)\right)$ satisfy the same recurrency relations. Using the analogue of the determinant formula and the analogue of Green's formula for this
recurrency we obtain the following relations between the functions $\phi_{n}, \phi_{n}^{*}, \psi_{n}$ and ψ_{n}^{*} which will be used in the present paper.

$$
\begin{gather*}
\phi_{n}^{*}(z) \psi_{n}(z)+\phi_{n}(z) \psi_{n}^{*}(z)=\frac{1-\left|\alpha_{n}\right|^{2}}{1-\overline{\alpha_{n}} z} \frac{-2 z \mathbb{B}_{n}(z)}{z-\alpha_{n}}, \tag{2.3}\\
\frac{\phi_{n}^{*}(z) \overline{\psi_{n}^{*}(w)}+\phi_{n}(z) \overline{\psi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}}+\frac{2}{1-z \bar{w}}=-\sum_{k=0}^{n-1} \phi_{k}(z) \overline{\psi_{k}(w)}, \tag{2.4}\\
\frac{\psi_{n}^{*}(z) \overline{\psi_{n}^{*}(w)}-\psi_{n}(z) \overline{\psi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}}=\sum_{k=0}^{n-1} \psi_{k}(z) \overline{\psi_{k}(w)} \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\left|\psi_{n}^{*}(z)+s \phi_{n}^{*}(z)\right|^{2}-\left|\psi_{n}(z)-s \phi_{n}(z)\right|^{2}}{1-\left|\zeta_{n}(z)\right|^{2}}+\frac{2(s+\bar{s})}{1-|z|^{2}}=\sum_{k=0}^{n-1}\left|\psi_{k}(z)-s \phi_{k}(z)\right|^{2} . \tag{2.6}
\end{equation*}
$$

Proofs of (2.3)-(2.6) can be found in [4].
If ν is a finite positive Borel measure on $[-\pi, \pi)$ then we write

$$
F_{\nu}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \nu(\theta), \quad \text { where } \quad t=e^{i \theta}
$$

Clearly F_{ν} is an analytic function on $\mathbb{C} \backslash \mathbb{T}$. In fact F_{ν} is analytic outside the support of the measure on \mathbb{T} which corresponds to ν by the mapping $\theta \mapsto e^{i \theta}$. If ν_{1} and ν_{2} are finite positive Borel measures on $[-\pi, \pi)$ and $F_{\nu_{1}}(z)=F_{\nu_{2}}(z)$ for $z \in \mathbb{C} \backslash \mathbb{T}$ then $\nu_{1}=\nu_{2}$. Sometimes the function F_{ν} is called the Riesz-Herglotz transform of the measure ν. Regarding this transform we mention the following special case of [5, Theorem 6.2.1].

Proposition 2.1 If ν_{1} and ν_{2} are positive Borel measures on $[-\pi, \pi)$ with $\nu_{1}([-\pi, \pi))=$ $\nu_{2}([-\pi, \pi))=1$, then

$$
\int_{-\pi}^{\pi} f(t) \overline{g(t)} d \nu_{1}(\theta)=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d \nu_{2}(\theta), \quad\left(t=e^{i \theta}\right), \quad \text { for } \quad f, g \in \mathcal{L}_{n}
$$

if and only if

$$
F_{\nu_{1}}(z)-F_{\nu_{2}}(z)=\mathbb{B}_{n}(z) g(z)
$$

where g is analytic in \mathbb{D} and $g(0)=0$.
In the present paper we consider the expression

$$
R_{n}(z, \tau)=\frac{\psi_{n}(z)-\tau \psi_{n}^{*}(z)}{\phi_{n}(z)+\tau \phi_{n}^{*}(z)}
$$

for $z, \tau \in \mathbb{C}$.

If $\tau \in \mathbb{T}$, then there exists a (discrete) positive Borel measure μ_{n} which solves the "truncated" moment problem in \mathcal{L}_{n-1}, i.e.

$$
\int_{-\pi}^{\pi} f(t) \overline{g(t)} d \mu_{n}(\theta)=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d \mu(\theta), \quad\left(t=e^{i \theta}\right), \quad \text { for } \quad f, g \in \mathcal{L}_{n-1}
$$

such that

$$
F_{\mu_{n}}(z)=R_{n}(z, \tau) \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{T} .
$$

See [3].
In [4] it is shown that for fixed $z \in \mathbb{D}_{0} \cup \mathbb{E}_{0}$ the values of

$$
s=R_{n}(z, \tau)
$$

describe a circle $K_{n}(z)$ if τ varies in \mathbb{T}. The equation of $K_{n}(z)$ is

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|\psi_{k}(z)-s \phi_{k}(z)\right|^{2}=\frac{2(s+\bar{s})}{1-|z|^{2}} . \tag{2.7}
\end{equation*}
$$

and the corresponding closed disk $\Delta_{n}(z)$ is given by the equation

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|\psi_{k}(z)-s \phi_{k}(z)\right|^{2} \leq \frac{2(s+\bar{s})}{1-|z|^{2}} \tag{2.8}
\end{equation*}
$$

The interior of $\Delta_{n}(z)$ will be denoted as $\Delta_{n}^{0}(z)$. It follows from (2.8) that $\Delta_{n}(z) \supset \Delta_{n+1}(z)$, $n=1,2, \ldots$, so the disks $\Delta_{n}(z)$ are nested. Equation (2.8) also implies that

$$
\Delta_{n}(z) \subset \mathbb{H} \quad \text { if } \quad z \in \mathbb{D}_{0}
$$

and

$$
\Delta_{n}(z) \subset \mathbb{G} \quad \text { if } \quad z \in \mathbb{E}_{0}
$$

3 The moment problem

Since we assume that our moment problem is indeterminate, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-\left|\alpha_{n}\right|\right)<\infty \tag{3.1}
\end{equation*}
$$

Indeed, if this series would diverge, then by [5, Theorem 7.1.2] and a density argument in $C(\mathbb{T})$, the moment problem would have only one solution. (Notice that there is a misprint in this theorem: $1 \leq p \leq \infty$ must be $1 \leq p<\infty$.) See also [5, Chapter 10]. Evidently (3.1) implies that $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$ is a discrete subset of \mathbb{D} and that each α_{n} occurs only a finite number of times in the sequence $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. Let S be the set of accumulation points of $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$.

Then S is a closed subset of \mathbb{T}. In [4] it is shown that the series $\sum_{n=0}^{\infty}\left|\phi_{n}(z)\right|^{2}, \sum_{n=0}^{\infty}\left|\phi_{n}^{*}(z)\right|^{2}$, $\sum_{n=0}^{\infty}\left|\psi_{n}(z)\right|^{2}$ and $\sum_{n=0}^{\infty}\left|\psi_{n}^{*}(z)\right|^{2}$ converge uniformly on compact subsets of $\mathbb{D}_{0} \cup \mathbb{E}_{0}$. However, the argument of the proof of [4, Theorem 6.2] also gives uniform convergence of these series on compact subsets of $\mathbb{D}_{0} \cup \mathbb{E}_{0} \cup(\mathbb{T} \backslash S)$. In the remaining part of this paper we assume that

$$
S \neq \mathbb{T} .
$$

For fixed $w \in \mathbb{C}$ we define

$$
\begin{aligned}
A_{n}(z) & =\frac{\overline{\psi_{n}(w)} \psi_{n}(z)-\overline{\psi_{n}^{*}(w)} \psi_{n}^{*}(z)}{1-\overline{\zeta_{n}(w)} \zeta_{n}(z)}, \\
B_{n}(z) & =\frac{\overline{\psi_{n}(w)} \phi_{n}(z)+\overline{\psi_{n}^{*}(w)} \phi_{n}^{*}(z)}{1-\overline{\zeta_{n}(w)} \zeta_{n}(z)}, \\
C_{n}(z) & =\frac{\overline{\phi_{n}(w)} \psi_{n}(z)+\overline{\phi_{n}^{*}(w)} \psi_{n}^{*}(z)}{1-\overline{\zeta_{n}(w) \zeta_{n}(z)}}, \\
D_{n}(z) & =\frac{\overline{\phi_{n}(w)} \phi_{n}(z)-\overline{\phi_{n}^{*}(w)} \phi_{n}^{*}(z)}{1-\overline{\zeta_{n}(w)} \zeta_{n}(z)} .
\end{aligned}
$$

By (2.1), (2.4) and (2.5) we have

$$
\begin{gathered}
A_{n}(z)=-\sum_{k=0}^{n-1} \overline{\psi_{k}(w)} \psi_{k}(z), \\
B_{n}(z)=-\frac{2}{1-\bar{w} z}-\sum_{k=0}^{n-1} \overline{\psi_{k}(w)} \phi_{k}(z), \\
C_{n}(z)=-\frac{2}{1-\bar{w} z}-\sum_{k=0}^{n-1} \overline{\phi_{k}(w)} \psi_{k}(z), \\
D_{n}(z)=-\sum_{k=0}^{n-1} \overline{\phi_{k}(w)} \phi_{k}(z) .
\end{gathered}
$$

These functions also may be written as

$$
A_{n}(z)=\frac{a_{n}(z)}{\pi_{n-1}(z)}, \quad D_{n}(z)=\frac{d_{n}(z)}{\pi_{n-1}(z)},
$$

where $a_{n}, d_{n} \in \Pi_{n-1}$, the set of polynomials of degree at most $n-1$, and

$$
B_{n}(z)=\frac{b_{n}(z)}{(1-\bar{w} z) \pi_{n-1}(z)}, \quad C_{n}(z)=\frac{c_{n}(z)}{(1-\bar{w} z) \pi_{n-1}(z)},
$$

where $b_{n}, c_{n} \in \Pi_{n}$. The coefficients of the polynomials $a_{n}, b_{n}, c_{n}, d_{n}$ depend on w.
In the sequel we assume that $w \in \mathbb{T} \backslash S$. The condition $w \in \mathbb{T}$ is needed to get the right mapping properties as used for example in (3.9) and the condition $w \notin S$ is needed to get the convergence of series of rational functions in w such as the series $\sum\left|\psi_{k}(w)\right|^{2}$ is the next paragraph.

From the uniform convergence of the series $\sum_{n=0}^{\infty}\left|\phi_{n}(z)\right|^{2}, \sum_{n=0}^{\infty}\left|\phi_{n}^{*}(z)\right|^{2}, \sum_{n=0}^{\infty}\left|\psi_{n}(z)\right|^{2}$ and $\sum_{n=0}^{\infty}\left|\psi_{n}^{*}(z)\right|^{2}$ on compact subsets of $\mathbb{D}_{0} \cup \mathbb{E}_{0} \cup(\mathbb{T} \backslash S)$ it follows immediately that the functions $A_{n}(z), B_{n}(z), C_{n}(z)$ and $D_{n}(z)$ converge uniformly on compact subsets of $\mathbb{D}_{0} \cup \mathbb{E}_{0} \cup(\mathbb{T} \backslash S)$ as $n \rightarrow \infty$. For e.g. B_{n} we have

$$
\left|B_{m}(z)-B_{n}(z)\right|=\left|\sum_{k=n}^{m-1} \overline{\psi_{k}(w)} \phi_{k}(z)\right| \leq \sum_{k=n}^{m-1}\left|\psi_{k}(w)\right|^{2} \sum_{k=n}^{m-1}\left|\phi_{k}(z)\right|^{2},
$$

so $\left\{B_{n}(z)\right\}_{n=1}^{\infty}$ is a uniform Cauchy sequence on compact subsets of $\mathbb{D}_{0} \cup \mathbb{E}_{0} \cup(\mathbb{T} \backslash S)$. Clearly the limits $A(z), B(z), C(z)$ and $D(z)$ of $A_{n}(z), B_{n}(z), C_{n}(z)$ and $D_{n}(z)$ respectively are analytic in $\mathbb{D}_{0} \cup \mathbb{E}_{0} \cup(\mathbb{T} \backslash S)$.

As

$$
\begin{aligned}
& {\left[1-\overline{\zeta_{n}(w)} \zeta_{n}(z)\right]^{2}\left[A_{n}(z) D_{n}(z)-B_{n}(z) C_{n}(z)\right]} \\
& \quad=--\overline{\left[\phi_{n}^{*}(w) \psi_{n}(w)+\psi_{n}^{*}(w) \phi_{n}(w)\right]}\left[\phi_{n}^{*}(z) \psi_{n}(z)+\psi_{n}^{*}(z) \phi_{n}(z)\right]
\end{aligned}
$$

it follows from (2.3) and

$$
1-\overline{\zeta_{n}(w)} \zeta_{n}(z)=\frac{\left(1-\left|\alpha_{n}\right|^{2}\right)(1-\bar{w} z)}{\left(1-\alpha_{n} \bar{w}\right)\left(1-\overline{\alpha_{n}} z\right)}
$$

that

$$
A_{n}(z) D_{n}(z)-B_{n}(z) C_{n}(z)=-4 \frac{\bar{w} \overline{\mathbb{B}_{n}(w)} z \mathbb{B}_{n}(z)\left(1-\alpha_{n} \bar{w}\right)\left(1-\overline{\alpha_{n}} z\right)}{\left(\bar{w}-\overline{\alpha_{n}}\right)\left(z-\alpha_{n}\right)(1-\bar{w} z)^{2}}
$$

As $w \in \mathbb{T}$, this becomes

$$
\begin{equation*}
A_{n}(z) D_{n}(z)-B_{n}(z) C_{n}(z)=-4 \frac{w \overline{\mathbb{B}_{n}(w)} z \mathbb{B}_{n}(z)\left(w-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z\right)}{\left(1-\overline{\alpha_{n}} w\right)\left(z-\alpha_{n}\right)(w-z)^{2}} \tag{3.2}
\end{equation*}
$$

This implies that the mapping

$$
t \mapsto \frac{A_{n}(z) t+C_{n}(z)}{B_{n}(z) t+D_{n}(z)}
$$

is a well-defined linear fractional transformation if $z \in \mathbb{D}_{0}$ and $w \in \mathbb{T}$.
Some simple calculations yield

$$
A_{n}(z) t+C_{n}(z)=\frac{\overline{\psi_{n}(w)} t+\overline{\phi_{n}(w)}}{1-\overline{\zeta_{n}(w)} \zeta_{n}(z)}\left[\psi_{n}(z)-\frac{\overline{\psi_{n}^{*}(w)} t-\overline{\phi_{n}^{*}(w)}}{\overline{\psi(w)} t+\overline{\phi_{n}(w)}} \psi_{n}^{*}(z)\right]
$$

and

$$
B_{n}(z) t+D_{n}(z)=\frac{\overline{\psi_{n}(w)} t+\overline{\phi_{n}(w)}}{1-\overline{\zeta_{n}(w)} \zeta_{n}(z)}\left[\phi_{n}(z)+\frac{\overline{\psi_{n}^{*}(w)} t-\overline{\phi_{n}^{*}(w)}}{\overline{\psi(w) t} t+\overline{\phi_{n}(w)}} \phi_{n}^{*}(z)\right] .
$$

Set

$$
\tau=\tau_{n}(t)=\frac{\overline{\psi_{n}^{*}(w)} t-\overline{\phi_{n}^{*}(w)}}{\overline{\psi(w)} t+\overline{\phi_{n}(w)}}, \quad \text { so } \quad t=-\frac{\overline{\phi_{n}(w)} \tau+\overline{\phi_{n}^{*}(w)}}{\overline{\psi(w)} \tau-\overline{\psi_{n}^{*}(w)}} .
$$

Then

$$
\begin{equation*}
\frac{A_{n}(z) t+C_{n}(z)}{B_{n}(z) t+D_{n}(z)}=\frac{\psi_{n}(z)-\tau \psi_{n}^{*}(z)}{\phi_{n}(z)+\tau \phi_{n}^{*}(z)}=R_{n}(z, \tau)=s \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\bar{t}}=-\frac{\psi_{n}(w) \bar{\tau}-\psi_{n}^{*}(w)}{\phi_{n}(w) \bar{\tau}+\phi_{n}^{*}(w)}=-\frac{\psi_{n}(w)-\frac{1}{\bar{\tau}} \psi_{n}^{*}(w)}{\phi_{n}(w)+\frac{1}{\bar{\tau}} \phi_{n}^{*}(w)}=-R_{n}\left(w, \frac{1}{\bar{\tau}}\right) . \tag{3.4}
\end{equation*}
$$

We have already observed that $\tau \mapsto s=R_{n}(z, \tau)$ maps \mathbb{T} onto $K_{n}(z)$ if $z \in \mathbb{D}_{0} \cup \mathbb{E}_{0}$. From (2.3) we conclude that $\tau \mapsto s$ is a well-defined linear fractional transformation if $z \in \mathbb{D}_{0} \cup \mathbb{T}$. We first consider the case $z \in \mathbb{D}_{0}$. Then (2.6) in the form

$$
\begin{equation*}
\frac{\left|\psi_{n}^{*}(z)+s \phi_{n}^{*}(z)\right|^{2}-\left|\psi_{n}(z)-s \phi_{n}(z)\right|^{2}}{1-\left|\zeta_{n}(z)\right|^{2}}=\sum_{k=0}^{n-1}\left|\psi_{k}(z)-s \phi_{k}(z)\right|^{2}-\frac{2(s+\bar{s})}{1-|z|^{2}} \tag{3.5}
\end{equation*}
$$

and the equations for $K_{n}(z)$ and $\Delta_{n}(z)$ imply

$$
\left\{\begin{align*}
\tau \in \mathbb{D} & \Longleftrightarrow s \in(\mathbb{C} \cup\{\infty\}) \backslash \Delta_{n}(z), \tag{3.6}\\
\tau \in \mathbb{T} & \Longleftrightarrow s \in K_{n}(z) \\
\tau \in \mathbb{E} \cup\{\infty\} & \Longleftrightarrow s \in \Delta_{n}^{0}(z)
\end{align*}\right.
$$

Now let $z \in \mathbb{T}$. Then we multiply (3.5) with z replaced by $v, v \in \mathbb{D}_{0}$, by $1-|v|^{2}$ and let $v \rightarrow z$ to obtain

$$
\begin{equation*}
\left|1-\overline{\alpha_{n}} z\right|^{2}\left\{\left|\psi_{n}^{*}(z)+s \phi_{n}^{*}(z)\right|^{2}-\left|\psi_{n}(z)-s \phi_{n}(z)\right|^{2}\right\}=-2(s+\bar{s}) . \tag{3.7}
\end{equation*}
$$

This yields

$$
\left\{\begin{align*}
\tau \in \mathbb{D} & \Longleftrightarrow s \in \mathbb{G}, \tag{3.8}\\
\tau \in \mathbb{T} & \Longleftrightarrow s \in \mathbb{I} \cup\{\infty\}, \\
\tau \in \mathbb{E} \cup\{\infty\} & \Longleftrightarrow s \in \mathbb{H} .
\end{align*}\right.
$$

Notice that in this case $s=\infty$ gives $\phi_{n}(z)+\tau \phi_{n}^{*}(z)=0$ while $\left|\phi_{n}(z)\right|=\left|\phi_{n}^{*}(z)\right| \neq 0$ by (2.1), and hence $\tau \in \mathbb{T}$. Recall that $w \in \mathbb{T} \backslash S$. Thus (3.8) implies that for τ and t in (3.4) we have

$$
\left\{\begin{align*}
\tau \in \mathbb{D} & \Longleftrightarrow t \in \mathbb{G} \tag{3.9}\\
\tau \in \mathbb{T} & \Longleftrightarrow t \in \mathbb{I} \cup\{\infty\} \\
\tau \in \mathbb{E} \cup\{\infty\} & \Longleftrightarrow t \in \mathbb{H} .
\end{align*}\right.
$$

Now let s and t be as in (3.3). If $z \in \mathbb{D}_{0}$, combination of (3.6) and (3.9) gives

$$
\left\{\begin{align*}
t \in \mathbb{G} & \Longleftrightarrow s \in(\mathbb{C} \cup\{\infty\}) \backslash \Delta_{n}(z) \tag{3.10}\\
t \in \mathbb{I} \cup\{\infty\} & \Longleftrightarrow s \in K_{n}(z) \\
t \in \mathbb{H} & \Longleftrightarrow s \in \Delta_{n}^{0}(z)
\end{align*}\right.
$$

If $z \in \mathbb{T}$ we get

$$
\left\{\begin{aligned}
t \in \mathbb{G} & \Longleftrightarrow s \in \mathbb{G}, \\
t \in \mathbb{I} \cup\{\infty\} & \Longleftrightarrow s \in \mathbb{I} \cup\{\infty\}, \\
t \in \mathbb{H} & \Longleftrightarrow s \in \mathbb{H} .
\end{aligned}\right.
$$

Notice hat $K_{n}(z) \subset \mathbb{H}$ if $z \in \mathbb{D}_{0}$. Therefore

$$
z \mapsto s=\frac{A_{n}(z) t+C_{n}(z)}{B_{n}(z) t+D_{n}(z)}
$$

maps \mathbb{D}_{0} into \mathbb{H} if $t \in \mathbb{H} \cup \mathbb{I}$.
As we will establish a one-to-one correspondence between Carathéodory functions and solutions to the moment problem we consider two subsections I and II. In I we start from a Carathéodory function $h \in \mathcal{C}$ or from an infinite constant. If $h \in \mathcal{C}$ we show that there exists a unique solution ν to the moment problem with

$$
\begin{equation*}
F_{\nu}(z)=\frac{A(z) h(z)+C(z)}{B(z) h(z)+D(z)} \tag{3.11}
\end{equation*}
$$

The infinite constant corresponds to $F_{\nu}(z)=\frac{A(z)}{B(z)}$. Conversely in II we begin with a solution ν of the moment problem and we show that there is a unique $h \in \mathcal{C}$ such that (3.11) holds or $F_{\nu}(z)=\frac{A(z)}{B(z)}$. Combination of I and II will lead to our main result.
I. Let $h \in \mathcal{C}$. Put

$$
F_{n}(z)=\frac{A_{n}(z) h(z)+C_{n}(z)}{B_{n}(z) h(z)+D_{n}(z)}
$$

for $z \in \mathbb{D}_{0}$. Then F_{n} maps \mathbb{D}_{0} into \mathbb{H}. If we multiply numerator and denominator of F_{n} by $(1-\bar{w} z) \pi_{n-1}(z)$ which is non-zero in \mathbb{D}, we obtain

$$
F_{n}(z)=\frac{(1-\bar{w} z) a_{n}(z) h(z)+c_{n}(z)}{b_{n}(z) h(z)+(1-\bar{w} z) d_{n}(z)}
$$

So F_{n} is a quotient of analytic functions in \mathbb{D} and hence F_{n} is meromorphic in \mathbb{D}. Since \mathbb{D}_{0} is dense in \mathbb{D} and $F_{n}\left(\mathbb{D}_{0}\right)$ is contained in the half-plane $\mathbb{H} \cup \mathbb{I}, F_{n}$ must be analytic in \mathbb{D}. Therefore $F_{n} \in \mathcal{C}$.

Hence by the Riesz-Herglotz representation theorem for Carathéodory functions there is a positive Borel measure ν_{n} on $[-\pi, \pi)$ and a real constant c_{n} such that

$$
F_{n}(z)=i c_{n}+\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \nu_{n}(\theta), \quad\left(t=e^{i \theta}\right)
$$

See [1] or [5]. On the other hand we have

$$
F_{n}(z)=R_{n}\left(z, \tau_{n}(h(z))\right.
$$

and in particular

$$
F_{n}(0)=R_{n}\left(0, \tau_{n}(h(0))\right)=\frac{\psi_{n}(0)-\tau_{n}(h(0)) \psi_{n}^{*}(0)}{\phi_{n}(0)+\tau_{n}(h(0)) \phi_{n}^{*}(0)} .
$$

By orthogonality of the ϕ_{n} it follows from the definition of ψ_{n} and from (2.2) that

$$
\psi_{n}(0)=\int_{-\pi}^{\pi}\left[\phi_{n}(0)-\phi_{n}\left(e^{i \theta}\right)\right] d \mu(\theta)=\phi_{n}(0)
$$

and

$$
\psi_{n}^{*}(0)=\int_{-\pi}^{\pi}\left[\frac{\mathbb{B}_{n}(0)}{\mathbb{B}_{n}\left(e^{i \theta}\right)} \phi_{n}^{*}\left(e^{i \theta}\right)-\phi_{n}^{*}(0)\right] d \mu(\theta)=-\phi_{n}^{*}(0)
$$

if $n \geq 1$. Hence $F_{n}(0)=1$ if $n \geq 1$ and from the representation of F_{n} we get $c_{n}=\Im F_{n}(0)=0$ and $\nu_{n}([-\pi, \pi))=F_{n}(0)=1$. Hence

$$
F_{n}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \nu_{n}(\theta)=F_{\nu_{n}}(z)
$$

which is the Riesz- Herglotz transform of the measure ν_{n}.
For every $\tau=\tau_{n}(t) \in \mathbb{T}$ there is a measure $\mu_{n}=\mu_{n}\left(\cdot, \tau_{n}(t)\right)$ such that $F_{\mu_{n}}(z)=R_{n}\left(z, \tau_{n}(t)\right)$ which solves the truncated moment problem in \mathcal{L}_{n-1}. As $\tau_{n}(t) \in \mathbb{T}$ if and only if $t \in \mathbb{I} \cup\{\infty\}$, we may take $t=\infty$ to obtain the measure $\mu_{n}^{(0)}=\mu_{n}(\cdot, \tau(\infty))$ solving the truncated moment problem in \mathcal{L}_{n-1} and such that

$$
F_{\mu_{n}^{(0)}}(z)=R_{n}\left(z, \tau_{n}(\infty)\right)=\frac{A_{n}(z)}{B_{n}(z)}
$$

We will use the measure $\mu_{n}^{(0)}$ to show that under a certain condition on the function h, also ν_{n} solves the truncated moment problem in \mathcal{L}_{n-1}. To that end we consider $F_{n}(z)-F_{\mu_{n}^{(0)}}(z)$. Using (2.3) we get after some tedious calculations

$$
\begin{aligned}
F_{n}(z) & -F_{\mu_{n}^{(0)}}(z)=\frac{A_{n}(z) h(z)+C_{n}(z)}{B_{n}(z) h(z)+D_{n}(z)}-\frac{A_{n}(z)}{B_{n}(z)} \\
& =-\frac{A_{n}(z) D_{n}(z)-B_{n}(z) C_{n}(z)}{B_{n}(z)\left[B_{n}(z) h(z)+D_{n}(z)\right]} \\
& =4 \frac{w \overline{\mathbb{B}_{n}(w)} z \mathbb{B}_{n}(z)\left(w-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z\right)}{\left(1-\overline{\alpha_{n}} w\right)\left(z-\alpha_{n}\right)(w-z)^{2} B_{n}(z)\left[B_{n}(z) h(z)+D_{n}(z)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =4 \frac{w \overline{\mathbb{B}_{n}(w)} z \mathbb{B}_{n}(z)\left(w-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z\right)}{\left(1-\overline{\alpha_{n}} w\right)\left(z-\alpha_{n}\right)(w-z)^{2} \frac{b_{n}(z)}{(1-\bar{w} z) \pi_{n-1}(z)}\left[\frac{b_{n}(z)}{(1-\bar{w} z) \pi_{n-1}(z)} h(z)+\frac{d_{n}(z)}{\pi_{n-1}(z)}\right]} \\
& =4 \overline{4 \overline{\mathbb{B}}_{n-1}(w)} \frac{z \mathbb{B}_{n-1}(z)\left(\pi_{n-1}(z)\right)^{2}}{b_{n}(z)\left[w b_{n}(z) h(z)+(w-z) d_{n}(z)\right]} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
F_{n}(z)-F_{\mu_{n}^{(0)}}(z)=z \mathbb{B}_{n-1}(z) J_{n-1}(z) \tag{3.12}
\end{equation*}
$$

where J_{n-1} is a rational function and $F_{n}(z)-F_{\mu_{n}^{(0)}}(z)$ is analytic in \mathbb{D}.
Now we assume that the function h satisfies

$$
\begin{equation*}
w b_{n}\left(\alpha_{k}\right) h\left(\alpha_{k}\right)+\left(w-\alpha_{k}\right) d_{n}\left(\alpha_{k}\right) \neq 0 \quad \text { for } \quad k=0,1, \ldots, n-1 . \tag{3.13}
\end{equation*}
$$

Remember that $\alpha_{0}=0$. Since the numerator $\overline{\psi_{n}(w)} \phi_{n}(z)-\overline{\psi_{n}^{*}(w)} \phi_{n}^{*}(z)$ of $B_{n}(z)$ is paraorthogonal, it has its zeros in \mathbb{T}. See [4]. Notice that $\left|\psi_{n}(w)\right|=\left|\psi_{n}^{*}(w)\right| \neq 0$ for $w \in \mathbb{T}$. Hence $b_{n}(z) \neq 0$ for $z \in \mathbb{D}$. Therefore the assumption (3.13) implies that J_{n-1} will not have poles at the points $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$. But then

$$
J_{n-1}(z)=\frac{F_{n}(z)-F_{\mu_{n}^{(0)}}(z)}{z \mathbb{B}_{n-1}(z)}
$$

is analytic in \mathbb{D}. Since $F_{n}=F_{\nu_{n}}$ it follows from (3.12) and Proposition 2.1 that ν_{n} and $\mu_{n}^{(0)}$ induce the same inner product on \mathcal{L}_{n-1}. Thus under the condition (3.13) also ν_{n} is a solution to the truncated moment problem in \mathcal{L}_{n-1}.

Suppose now that h is an arbitrary Carathéodory function. Then we take $\gamma_{n} \in \mathbb{R}, \gamma_{n}>0$ with $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that (3.13) is satisfied for all n if h is replaced by $h_{n}(z)=h(z)+\gamma_{n}$. It is clear that $h_{n} \in \mathcal{C}$ and that $h_{n} \rightarrow h$ as $n \rightarrow \infty$. By the foregoing for each n there exists a solution ν_{n} of the truncated moment problem in \mathcal{L}_{n-1} such that

$$
F_{\nu_{n}}(z)=\frac{A_{n}(z) h_{n}(z)+C_{n}(z)}{B_{n}(z) h_{n}(z)+D_{n}(z)}
$$

By the argument given in [4], applying Helly's theorems on the non-decreasing functions $\theta \mapsto$ $\nu_{n}([-\pi, \theta))$, we obtain a subsequence $\left\{\nu_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ such that $\nu=\lim _{k \rightarrow \infty} \nu_{n_{k}}$ is a solution to the (full) moment problem and $F_{\nu_{n_{k}}}(z)$ converges to $F_{\nu}(z)$. On the other hand

$$
F_{\nu_{n_{k}}}(z)=\frac{A_{n_{k}}(z) h_{n_{k}}(z)+C_{n_{k}}(z)}{B_{n_{k}}(z) h_{n_{k}}(z)+D_{n_{k}}(z)} \rightarrow \frac{A(z) h(z)+C(z)}{B(z) h(z)+D(z)} \quad \text { as } \quad k \rightarrow \infty
$$

for all $z \in \mathbb{D}_{0}$. Hence for each $h \in \mathcal{C}$ there is a solution ν to the moment problem such that (3.11) is satisfied. Obviously ν is unique.

If $h \equiv \infty$ we apply Helly's theorems on the measures $\mu_{n}^{(0)}$ and we get a subsequence $\left\{\mu_{n_{k}}^{(0)}\right\}_{k=1}^{\infty}$ converging to a positive Borel measure ν satisfying $F_{\nu}(z)=\frac{A(z)}{B(z)}$ for $z \in \mathbb{D}_{0}$.
II. Assume that ν is a solution to the moment problem. For $z \in \mathbb{D}_{0}$ define $h_{n}(z)$ by

$$
F_{\nu}(z)=\frac{A_{n}(z) h_{n}(z)+C_{n}(z)}{B_{n}(z) h_{n}(z)+D_{n}(z)},
$$

i.e.

$$
h_{n}(z)=-\frac{D_{n}(z) F_{\nu}(z)-C_{n}(z)}{B_{n}(z) F_{\nu}(z)-A_{n}(z)}=-\frac{(1-\bar{w} z) d_{n}(z) F_{\nu}(z)-c_{n}(z)}{b_{n}(z) F_{\nu}(z)-(1-\bar{w} z) a_{n}(z)} .
$$

Since F_{ν} is analytic in \mathbb{D} and $a_{n}, b_{n}, c_{n}, d_{n}$ are polynomials, h_{n} may be considered to be meromorphic in \mathbb{D}. From (3.10) and the fact that $F_{\nu}(z) \in \Delta_{n}(z)$ if $z \in \mathbb{D}_{0}$, see [4], we conclude that $h_{n}(z) \in \mathbb{I} \cup\{\infty\} \cup \mathbb{H}$ if $z \in \mathbb{D}_{0}$. As \mathbb{D}_{0} is dense in \mathbb{D} it follows that h_{n} is analytic in \mathbb{D} and that $h_{n}(\mathbb{D}) \subset \mathbb{I} \cup \mathbb{H}$. Hence $h_{n} \in \mathcal{C}$.

Clearly $h_{n}(z)$ converges to

$$
h(z)=-\frac{D(z) F_{\nu}(z)-C(z)}{B(z) F_{\nu}(z)-A(z)}
$$

in \mathbb{D}_{0} as $n \rightarrow \infty$, where A, B, C, D are analytic in \mathbb{D}_{0}.
Suppose that h is not an infinite constant. As $h\left(\mathbb{D}_{0}\right) \subset \mathbb{I} \cup \mathbb{H}$, h must be analytic in \mathbb{D}_{0}, and for the same reason it follows from the Casorati-Weierstrass theorem that the singularities of h in \mathbb{D} must be removable. So h is extendable to an analytic function in \mathbb{D} which is again denoted as h. But then $h \in \mathcal{C}$. Hence given ν there is a unique $h \in \mathcal{C}$ such that

$$
F_{\nu}(z)=\frac{A(z) h(z)+C(z)}{B(z) h(z)+D(z)} \quad \text { for } \quad z \in \mathbb{D}_{0}
$$

or $h \equiv \infty$ in which case we have $F_{\nu}(z)=\frac{A(z)}{B(z)}$ for $z \in \mathbb{D}_{0}$.
Combination of the results in I and II leads to
Theorem 3.1 Assume that the moment problem as defined in section 1 is indeterminate. Suppose that the set S of all accumulation points of $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$ satisfies $S \neq \mathbb{T}$ and let A, B, C, D be the locally uniform limits in \mathbb{D}_{0} of the rational functions $A_{n}, B_{n}, C_{n}, D_{n}$, with parameter $w \in \mathbb{T} \backslash S$. Then the formula

$$
\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \nu(\theta)=\frac{A(z) h(z)+C(z)}{B(z) h(z)+D(z)}, \quad\left(t=e^{i \theta}\right), \quad z \in \mathbb{D}_{0}
$$

establishes a one-to-one correspondence between the collection of all solutions ν to the moment problem and the collection of all Carathéodory functions h augmented by the constant ∞.

Remark 3.2 If in Theorem 3.1 the function h is a constant in $\mathbb{I} \cup\{\infty\}$, then the measure ν is a N -extremal solution to the moment problem and every N -extremal solution is obtained in this way. See [6].

References

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh and London, 1965.
[2] A. Almendral, "Nevanlinna parametrization of the solutions to some rational moment problems", Analysis 23 (2003), 107-124.
[3] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "Orthogonal rational functions and modified approximants", Numerical Algorithms 11 (1994), 57-69.
[4] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "Orthogonal rational functions and nested disks", J. Approx. Theory 89 (3) (1997), 344-371.
[5] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions, volume 5 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 1999.
[6] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "A density problem for orthogonal rational functions.", J. Comput. Appl. Math. 105 (1999), 199-212.

[^0]: ${ }^{1}$ The work of this author is partially supported by the Fund for Scientific Research (FWO), project "RAM: Rational modelling: optimal conditioning and stable algorithms", grant \#G.0423.05 and the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with the author.
 ${ }^{2}$ The work of this author was partially supported by the Research Project of the Spanish Government, Ref. N. MTM2005-08571.

