An indeterminate rational moment problem and Carathéodory functions

A. Bultheel ^{a,1} P. González-Vera ^{b,2} E. Hendriksen ^c O. Njåstad ^d

Abstract

Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence of points in the open unit disk in the complex plane and let

$$\mathbb{B}_0 = 1$$
 and $\mathbb{B}_n(z) = \prod_{k=0}^n \frac{\overline{\alpha_k}}{|\alpha_k|} \frac{\alpha_k - z}{1 - \overline{\alpha_k} z}, \quad n = 1, 2, \dots,$

 $(\frac{\overline{\alpha_k}}{|\alpha_k|} = -1 \text{ when } \alpha_k = 0)$. We put $\mathcal{L} = \text{span}\{\mathbb{B}_n : n = 0, 1, 2, \ldots\}$ and we consider the following "moment" problem:

Given a positive-definite Hermitian inner product $\langle \cdot, \cdot \rangle$ in \mathcal{L} , find all positive Borel measures ν on $[-\pi, \pi)$ such that

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\nu(\theta) \quad \text{for} \quad f,g \in \mathcal{L}.$$

We assume that this moment problem is indeterminate. Under some additional condition on the α_n we will describe a one-to-one correspondence between the collection of all solutions to this moment problem and the collection of all Carathéodory functions augmented by the constant ∞ .

Key words: orthogonal rational functions, moment problem, Carathéodory function. 2000 MSC: 30E05

^aDepartment of Computer Science, K.U.Leuven, Celestijnenlaan 200 A, 3001 Heverlee, Belgium.

^bDepartment of Mathematical Analysis, La Laguna Univ., 38271-La Laguna, Tenerife, Spain.

^cDepartment of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

^dDepartment of Math. Sc., Norwegian Univ. of Science and Technology, N-7491 Trondheim, Norway Dedicated to Professor Claude Brezinski on the occasion of his retirement.

¹ The work of this author is partially supported by the Fund for Scientific Research (FWO), project "RAM: Rational modelling: optimal conditioning and stable algorithms", grant #G.0423.05 and the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with the author.

² The work of this author was partially supported by the Research Project of the Spanish Government, Ref. N. MTM2005-08571.

1 Introduction

As in [1] a moment problem is called indeterminate if it has more than one solution. In [1] it is shown that if the Hamburger moment problem is indeterminate, then there is a one-to-one correspondence between the collection of all the solutions to this moment problem and the collection of all Nevanlinna functions augmented by the constant ∞ . See [1, Theorem 3.2.2]. The purpose of the present paper is to prove a similar statement for a rational moment problem that arises in the study of certain rational functions with poles outside the closed unit disk in the extended complex plane. A one-to-one correspondence between the collection of all the solutions of our rational moment problem and the collection of all the Carathéodory functions and the constant ∞ will be established.

Let

$$\mathbb{T}=\{z\in\mathbb{C}:|z|=1\},\quad \mathbb{D}=\{z\in\mathbb{C}:|z|<1\},\quad \mathbb{E}=\{z\in\mathbb{C}:|z|>1\},\\ \mathbb{G}=\{z\in\mathbb{C}:\Re z<0\},\quad \mathbb{H}=\{z\in\mathbb{C}:\Re z>0\},\quad \mathbb{I}=\{z\in\mathbb{C}:\Re z=0\}.$$

Let α_n , n = 0, 1, 2, ... be given points in \mathbb{D} with $\alpha_0 = 0$ and let

$$\mathbb{D}_0 = \{ z \in \mathbb{D} : z \neq \alpha_j, \ j = 0, 1, 2, \ldots \} \quad \text{and} \quad \mathbb{E}_0 = \{ z \in \mathbb{E} : z \neq 1/\overline{\alpha_j}, \ j = 1, 2, \ldots \}.$$

The Blaschke factors ζ_n are given by

$$\zeta_n(z) = \frac{\overline{\alpha_n}}{|\alpha_n|} \cdot \frac{\alpha_n - z}{1 - \overline{\alpha_n}z}, \quad n = 0, 1, 2, \dots$$

where by convention

$$\frac{\overline{\alpha_n}}{|\alpha_n|} = -1$$
 when $\alpha_n = 0$.

The (finite) Blaschke products are

$$\mathbb{B}_n(z) = \prod_{k=1}^n \zeta_k(z), \quad n = 1, 2, \dots \text{ and } \mathbb{B}_0(z) = 1.$$

We define the linear spaces \mathcal{L}_n , $n = 0, 1, 2, \ldots$ and \mathcal{L} by

$$\mathcal{L}_n = \operatorname{span}\{\mathbb{B}_m : m = 0, 1, \dots, n\} \text{ and } \mathcal{L} = \bigcup_{n=0}^{\infty} \mathcal{L}_n.$$

Clearly \mathcal{L}_n consists of the functions that may be written as

$$\frac{p_n(z)}{\pi_n(z)}$$

where

$$\pi_n(z) = \prod_{k=1}^n (1 - \overline{\alpha_k}z), \quad n = 1, 2, \dots \text{ and } \pi_0(z) = 1$$

and p_n belongs to Π_n , the set of polynomials of degree at most n. The substar conjugate f_* of a function f is defined as

$$f_*(z) = \overline{f(1/\overline{z})}.$$

For $f \in \mathcal{L}_n \setminus \mathcal{L}_{n-1}$ the superstar conjugate f^* will be

$$f^*(z) = \mathbb{B}_n(z) f_*(z).$$

If $f \in \mathcal{L}_0$, then $f^* = f_*$. Furthermore we assume that μ is a positive Borel measure on $[-\pi, \pi)$ with $\mu([-\pi, \pi)) = 1$. Then

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\mu(\theta) \quad \text{for} \quad f, g \in \mathcal{L}$$

defines a Hermitian positive-definite inner product in \mathcal{L} .

In this paper we consider the following

Definition 1.1 (MOMENT PROBLEM) Given the inner product $\langle \cdot, \cdot \rangle$ in \mathcal{L} , find all positive Borel measures ν on $[-\pi, \pi)$ such that

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\nu(\theta) \quad \text{for} \quad f, g \in \mathcal{L}.$$

Remark 1.1 This formulation of the moment problem is equivalent to the following one: "Given a positive-definite measure μ on $[-\pi,\pi)$, find all positive Borel measures ν on $[-\pi,\pi)$ such that

$$\int_{-\pi}^{\pi} \mathbb{B}_n(e^{i\theta}) d\mu(\theta) = \int_{-\pi}^{\pi} \mathbb{B}_n(e^{i\theta}) d\nu(\theta), \quad n \in \mathbb{Z}, \text{ where } \mathbb{B}_{-n} = \mathbb{B}_{n*}.$$

Note that this reduces to the classical trigonometric moment problem if all $\alpha_k = 0$.

It is evident that μ is a solution to this moment problem.

Throughout this paper we assume that this moment problem is indeterminate. Under an additional condition on the α_n , n = 0, 1, 2, ..., we will show that there is a one-to-one correspondence between the collection of all solutions to this moment problem and the collection of all Carathéodory functions augmented by the constant ∞ .

The collection of all Carathéodory functions will be denoted as \mathcal{C} . Recall that $f \in \mathcal{C}$ if and only if f is analytic in \mathbb{D} and $f(\mathbb{D}) \subset \mathbb{H} \cup \mathbb{I}$.

Remark 1.2 The assumption that our moment problem is indeterminate implies that it is not a generalization of the trigonometric moment problem which has always a unique solution.

A characterization in terms of Nevanlinna functions of the solutions with support in \mathbb{R} of an indeterminate (rational) moment problem related to rational functions with poles in the extended real line is treated in [2].

2 Orthogonal rational functions

In our approach orthogonal rational functions and the associated functions will play an important role. Let the sequence $\{\phi_n\}_{n=0}^{\infty}$ in \mathcal{L} be obtained by orthonormalization of the sequence $\{\mathbb{B}_n\}_{n=0}^{\infty}$ with respect to the inner product $\langle \cdot, \cdot \rangle$ on \mathcal{L} , i.e.

$$\phi_n \in \mathcal{L}_n$$
 and $\langle \phi_n, \phi_n \rangle = 1$, $n = 0, 1, 2, \dots$

and

$$\langle f, \phi_n \rangle = 0$$
 for $f \in \mathcal{L}_{n-1}$, $n = 1, 2, \dots$

Each ϕ_n can be written as

$$\phi_n(z) = \sum_{k=0}^n b_k^{(n)} \mathbb{B}_k(z).$$

We assume that the ϕ_n are chosen such that $b_n^{(n)} > 0$.

Using the uniqueness of the reproducing kernel

$$\sum_{k=0}^{n} \phi_k(z) \overline{\phi_k(w)}$$

for the inner product space \mathcal{L}_n it can be shown, see for instance [5], that the following Christoffel-Darboux formula holds

$$\frac{\phi_n^*(z)\overline{\phi_n^*(w)} - \phi_n(z)\overline{\phi_n(w)}}{1 - \zeta_n(z)\overline{\zeta_n(w)}} = \sum_{k=0}^{n-1} \phi_k(z)\overline{\phi_k(w)}.$$
 (2.1)

The associated functions ψ_n are defined by

$$\psi_0(z) = -\frac{1}{b_0^{(0)}}, \quad (\psi_0(z) = -\int_{-\pi}^{\pi} \phi_0(e^{i\theta}) d\mu(\theta)),$$

and

$$\psi_n(z) = \int_{-\pi}^{\pi} \frac{t+z}{t-z} [\phi_n(z) - \phi_n(t)] d\mu(\theta), \quad n = 1, 2, \dots \text{ with } t = e^{i\theta}.$$

(This definition and formula (2.2) below do not depend on the measure μ provided that it is a solution to the moment problem.) Obviously $\psi_n \in \mathcal{L}_n$ for $n = 0, 1, 2, \ldots$ For the superstar conjugates of the ψ_n we have

$$\psi_0^*(z) = -\frac{1}{b_0^{(0)}}$$

and

$$\psi_n^*(z) = \int_{-\pi}^{\pi} \frac{t+z}{t-z} \left[\frac{\mathbb{B}_n(z)}{\mathbb{B}_n(t)} \, \phi_n^*(t) - \phi_n^*(z) \right] d\mu(\theta), \quad n = 1, 2, \dots \quad \text{with} \quad t = e^{i\theta}. \tag{2.2}$$

See [3]. The pairs $(\phi_n(z), \phi_n^*(z))$ and $(\psi_n(z), -\psi_n^*(z))$ satisfy the same recurrency relations. Using the analogue of the determinant formula and the analogue of Green's formula for this

recurrency we obtain the following relations between the functions ϕ_n , ϕ_n^* , ψ_n and ψ_n^* which will be used in the present paper.

$$\phi_n^*(z)\psi_n(z) + \phi_n(z)\psi_n^*(z) = \frac{1 - |\alpha_n|^2}{1 - \overline{\alpha_n}z} \frac{-2z\mathbb{B}_n(z)}{z - \alpha_n},$$
(2.3)

$$\frac{\phi_n^*(z)\overline{\psi_n^*(w)} + \phi_n(z)\overline{\psi_n(w)}}{1 - \zeta_n(z)\overline{\zeta_n(w)}} + \frac{2}{1 - z\overline{w}} = -\sum_{k=0}^{n-1} \phi_k(z)\overline{\psi_k(w)},\tag{2.4}$$

$$\frac{\psi_n^*(z)\overline{\psi_n^*(w)} - \psi_n(z)\overline{\psi_n(w)}}{1 - \zeta_n(z)\overline{\zeta_n(w)}} = \sum_{k=0}^{n-1} \psi_k(z)\overline{\psi_k(w)}$$
(2.5)

and

$$\frac{|\psi_n^*(z) + s\phi_n^*(z)|^2 - |\psi_n(z) - s\phi_n(z)|^2}{1 - |\zeta_n(z)|^2} + \frac{2(s + \overline{s})}{1 - |z|^2} = \sum_{k=0}^{n-1} |\psi_k(z) - s\phi_k(z)|^2.$$
 (2.6)

Proofs of (2.3)-(2.6) can be found in [4].

If ν is a finite positive Borel measure on $[-\pi, \pi)$ then we write

$$F_{\nu}(z) = \int_{-\pi}^{\pi} \frac{t+z}{t-z} d\nu(\theta), \text{ where } t = e^{i\theta}.$$

Clearly F_{ν} is an analytic function on $\mathbb{C} \setminus \mathbb{T}$. In fact F_{ν} is analytic outside the support of the measure on \mathbb{T} which corresponds to ν by the mapping $\theta \mapsto e^{i\theta}$. If ν_1 and ν_2 are finite positive Borel measures on $[-\pi,\pi)$ and $F_{\nu_1}(z) = F_{\nu_2}(z)$ for $z \in \mathbb{C} \setminus \mathbb{T}$ then $\nu_1 = \nu_2$. Sometimes the function F_{ν} is called the Riesz-Herglotz transform of the measure ν . Regarding this transform we mention the following special case of [5, Theorem 6.2.1].

Proposition 2.1 If ν_1 and ν_2 are positive Borel measures on $[-\pi, \pi)$ with $\nu_1([-\pi, \pi)) = \nu_2([-\pi, \pi)) = 1$, then

$$\int_{-\pi}^{\pi} f(t)\overline{g(t)}d\nu_1(\theta) = \int_{-\pi}^{\pi} f(t)\overline{g(t)}d\nu_2(\theta), \quad (t = e^{i\theta}), \quad \text{for} \quad f, g \in \mathcal{L}_n$$

if and only if

$$F_{\nu_1}(z) - F_{\nu_2}(z) = \mathbb{B}_n(z)g(z)$$

where q is analytic in \mathbb{D} and q(0) = 0.

In the present paper we consider the expression

$$R_n(z,\tau) = \frac{\psi_n(z) - \tau \psi_n^*(z)}{\phi_n(z) + \tau \phi_n^*(z)}$$

for $z, \tau \in \mathbb{C}$.

If $\tau \in \mathbb{T}$, then there exists a (discrete) positive Borel measure μ_n which solves the "truncated" moment problem in \mathcal{L}_{n-1} , i.e.

$$\int_{-\pi}^{\pi} f(t)\overline{g(t)}d\mu_n(\theta) = \int_{-\pi}^{\pi} f(t)\overline{g(t)}d\mu(\theta), \quad (t = e^{i\theta}), \quad \text{for} \quad f, g \in \mathcal{L}_{n-1}$$

such that

$$F_{\mu_n}(z) = R_n(z, \tau)$$
 for $z \in \mathbb{C} \setminus \mathbb{T}$.

See [3].

In [4] it is shown that for fixed $z \in \mathbb{D}_0 \cup \mathbb{E}_0$ the values of

$$s = R_n(z, \tau)$$

describe a circle $K_n(z)$ if τ varies in \mathbb{T} . The equation of $K_n(z)$ is

$$\sum_{k=0}^{n-1} |\psi_k(z) - s\phi_k(z)|^2 = \frac{2(s+\overline{s})}{1-|z|^2}.$$
 (2.7)

and the corresponding closed disk $\Delta_n(z)$ is given by the equation

$$\sum_{k=0}^{n-1} |\psi_k(z) - s\phi_k(z)|^2 \le \frac{2(s+\overline{s})}{1-|z|^2}.$$
 (2.8)

The interior of $\Delta_n(z)$ will be denoted as $\Delta_n^0(z)$. It follows from (2.8) that $\Delta_n(z) \supset \Delta_{n+1}(z)$, $n = 1, 2, \ldots$, so the disks $\Delta_n(z)$ are nested. Equation (2.8) also implies that

$$\Delta_n(z) \subset \mathbb{H}$$
 if $z \in \mathbb{D}_0$

and

$$\Delta_n(z) \subset \mathbb{G}$$
 if $z \in \mathbb{E}_0$.

3 The moment problem

Since we assume that our moment problem is indeterminate, we have

$$\sum_{n=0}^{\infty} (1 - |\alpha_n|) < \infty. \tag{3.1}$$

Indeed, if this series would diverge, then by [5, Theorem 7.1.2] and a density argument in $C(\mathbb{T})$, the moment problem would have only one solution. (Notice that there is a misprint in this theorem: $1 \leq p \leq \infty$ must be $1 \leq p < \infty$.) See also [5, Chapter 10]. Evidently (3.1) implies that $\{\alpha_n : n \in \mathbb{N}\}$ is a discrete subset of \mathbb{D} and that each α_n occurs only a finite number of times in the sequence $\{\alpha_n\}_{n=0}^{\infty}$. Let S be the set of accumulation points of $\{\alpha_n : n \in \mathbb{N}\}$.

Then S is a closed subset of \mathbb{T} . In [4] it is shown that the series $\sum_{n=0}^{\infty} |\phi_n(z)|^2$, $\sum_{n=0}^{\infty} |\phi_n^*(z)|^2$, $\sum_{n=0}^{\infty} |\psi_n^*(z)|^2$ and $\sum_{n=0}^{\infty} |\psi_n^*(z)|^2$ converge uniformly on compact subsets of $\mathbb{D}_0 \cup \mathbb{E}_0$. However, the argument of the proof of [4, Theorem 6.2] also gives uniform convergence of these series on compact subsets of $\mathbb{D}_0 \cup \mathbb{E}_0 \cup (\mathbb{T} \setminus S)$. In the remaining part of this paper we assume that

$$S \neq \mathbb{T}$$
.

For fixed $w \in \mathbb{C}$ we define

$$A_n(z) = \frac{\overline{\psi_n(w)}\psi_n(z) - \overline{\psi_n^*(w)}\psi_n^*(z)}{1 - \overline{\zeta_n(w)}\zeta_n(z)},$$

$$B_n(z) = \frac{\overline{\psi_n(w)}\phi_n(z) + \overline{\psi_n^*(w)}\phi_n^*(z)}{1 - \overline{\zeta_n(w)}\zeta_n(z)},$$

$$C_n(z) = \frac{\overline{\phi_n(w)}\psi_n(z) + \overline{\phi_n^*(w)}\psi_n^*(z)}{1 - \overline{\zeta_n(w)}\zeta_n(z)},$$

$$D_n(z) = \frac{\overline{\phi_n(w)}\phi_n(z) - \overline{\phi_n^*(w)}\phi_n^*(z)}{1 - \overline{\zeta_n(w)}\zeta_n(z)}.$$

By (2.1), (2.4) and (2.5) we have

$$A_n(z) = -\sum_{k=0}^{n-1} \overline{\psi_k(w)} \psi_k(z),$$

$$B_n(z) = -\frac{2}{1 - \overline{w}z} - \sum_{k=0}^{n-1} \overline{\psi_k(w)} \phi_k(z),$$

$$C_n(z) = -\frac{2}{1 - \overline{w}z} - \sum_{k=0}^{n-1} \overline{\phi_k(w)} \psi_k(z),$$

$$D_n(z) = -\sum_{k=0}^{n-1} \overline{\phi_k(w)} \phi_k(z).$$

These functions also may be written as

$$A_n(z) = \frac{a_n(z)}{\pi_{n-1}(z)}, \quad D_n(z) = \frac{d_n(z)}{\pi_{n-1}(z)},$$

where $a_n, d_n \in \Pi_{n-1}$, the set of polynomials of degree at most n-1, and

$$B_n(z) = \frac{b_n(z)}{(1 - \overline{w}z)\pi_{n-1}(z)}, \quad C_n(z) = \frac{c_n(z)}{(1 - \overline{w}z)\pi_{n-1}(z)},$$

where $b_n, c_n \in \Pi_n$. The coefficients of the polynomials a_n, b_n, c_n, d_n depend on w.

In the sequel we assume that $w \in \mathbb{T} \setminus S$. The condition $w \in \mathbb{T}$ is needed to get the right mapping properties as used for example in (3.9) and the condition $w \notin S$ is needed to get the convergence of series of rational functions in w such as the series $\sum |\psi_k(w)|^2$ is the next paragraph.

From the uniform convergence of the series $\sum_{n=0}^{\infty} |\phi_n(z)|^2$, $\sum_{n=0}^{\infty} |\phi_n^*(z)|^2$, $\sum_{n=0}^{\infty} |\psi_n(z)|^2$ and $\sum_{n=0}^{\infty} |\psi_n^*(z)|^2$ on compact subsets of $\mathbb{D}_0 \cup \mathbb{E}_0 \cup (\mathbb{T} \setminus S)$ it follows immediately that the functions $A_n(z)$, $B_n(z)$, $C_n(z)$ and $D_n(z)$ converge uniformly on compact subsets of $\mathbb{D}_0 \cup \mathbb{E}_0 \cup (\mathbb{T} \setminus S)$ as $n \to \infty$. For e.g. B_n we have

$$|B_m(z) - B_n(z)| = |\sum_{k=n}^{m-1} \overline{\psi_k(w)} \phi_k(z)| \le \sum_{k=n}^{m-1} |\psi_k(w)|^2 \sum_{k=n}^{m-1} |\phi_k(z)|^2,$$

so $\{B_n(z)\}_{n=1}^{\infty}$ is a uniform Cauchy sequence on compact subsets of $\mathbb{D}_0 \cup \mathbb{E}_0 \cup (\mathbb{T} \setminus S)$. Clearly the limits A(z), B(z), C(z) and D(z) of $A_n(z)$, $B_n(z)$, $C_n(z)$ and $D_n(z)$ respectively are analytic in $\mathbb{D}_0 \cup \mathbb{E}_0 \cup (\mathbb{T} \setminus S)$.

As

$$[1 - \overline{\zeta_n(w)}\zeta_n(z)]^2 [A_n(z)D_n(z) - B_n(z)C_n(z)]$$

$$= - \overline{[\phi_n^*(w)\psi_n(w) + \psi_n^*(w)\phi_n(w)]} [\phi_n^*(z)\psi_n(z) + \psi_n^*(z)\phi_n(z)]$$

it follows from (2.3) and

$$1 - \overline{\zeta_n(w)}\zeta_n(z) = \frac{(1 - |\alpha_n|^2)(1 - \overline{w}z)}{(1 - \alpha_n \overline{w})(1 - \overline{\alpha_n}z)}$$

that

$$A_n(z)D_n(z) - B_n(z)C_n(z) = -4\frac{\overline{w}\overline{\mathbb{B}_n(w)}z\mathbb{B}_n(z)(1-\alpha_n\overline{w})(1-\overline{\alpha_n}z)}{(\overline{w}-\overline{\alpha_n})(z-\alpha_n)(1-\overline{w}z)^2}.$$

As $w \in \mathbb{T}$, this becomes

$$A_n(z)D_n(z) - B_n(z)C_n(z) = -4\frac{w\overline{\mathbb{B}_n(w)}z\mathbb{B}_n(z)(w - \alpha_n)(1 - \overline{\alpha_n}z)}{(1 - \overline{\alpha_n}w)(z - \alpha_n)(w - z)^2}.$$
 (3.2)

This implies that the mapping

$$t \mapsto \frac{A_n(z)t + C_n(z)}{B_n(z)t + D_n(z)}$$

is a well-defined linear fractional transformation if $z \in \mathbb{D}_0$ and $w \in \mathbb{T}$.

Some simple calculations yield

$$A_n(z)t + C_n(z) = \frac{\overline{\psi_n(w)}t + \overline{\phi_n(w)}}{1 - \overline{\zeta_n(w)}\zeta_n(z)} \left[\psi_n(z) - \frac{\overline{\psi_n^*(w)}t - \overline{\phi_n^*(w)}}{\overline{\psi(w)}t + \overline{\phi_n(w)}} \psi_n^*(z) \right]$$

and

$$B_n(z)t + D_n(z) = \frac{\overline{\psi_n(w)}t + \overline{\phi_n(w)}}{1 - \overline{\zeta_n(w)}\zeta_n(z)} \left[\phi_n(z) + \frac{\overline{\psi_n^*(w)}t - \overline{\phi_n^*(w)}}{\overline{\psi(w)}t + \overline{\phi_n(w)}} \phi_n^*(z) \right].$$

Set

$$\tau = \tau_n(t) = \frac{\overline{\psi_n^*(w)}t - \overline{\phi_n^*(w)}}{\overline{\psi(w)}t + \overline{\phi_n(w)}}, \quad \text{so} \quad t = -\frac{\overline{\phi_n(w)}\tau + \overline{\phi_n^*(w)}}{\overline{\psi(w)}\tau - \overline{\psi_n^*(w)}}.$$

Then

$$\frac{A_n(z)t + C_n(z)}{B_n(z)t + D_n(z)} = \frac{\psi_n(z) - \tau \psi_n^*(z)}{\phi_n(z) + \tau \phi_n^*(z)} = R_n(z, \tau) = s$$
(3.3)

and

$$\frac{1}{\overline{t}} = -\frac{\psi_n(w)\overline{\tau} - \psi_n^*(w)}{\phi_n(w)\overline{\tau} + \phi_n^*(w)} = -\frac{\psi_n(w) - \frac{1}{\overline{\tau}}\psi_n^*(w)}{\phi_n(w) + \frac{1}{\overline{\tau}}\phi_n^*(w)} = -R_n(w, \frac{1}{\overline{\tau}}). \tag{3.4}$$

We have already observed that $\tau \mapsto s = R_n(z, \tau)$ maps \mathbb{T} onto $K_n(z)$ if $z \in \mathbb{D}_0 \cup \mathbb{E}_0$. From (2.3) we conclude that $\tau \mapsto s$ is a well-defined linear fractional transformation if $z \in \mathbb{D}_0 \cup \mathbb{T}$. We first consider the case $z \in \mathbb{D}_0$. Then (2.6) in the form

$$\frac{|\psi_n^*(z) + s\phi_n^*(z)|^2 - |\psi_n(z) - s\phi_n(z)|^2}{1 - |\zeta_n(z)|^2} = \sum_{k=0}^{n-1} |\psi_k(z) - s\phi_k(z)|^2 - \frac{2(s+\overline{s})}{1 - |z|^2}$$
(3.5)

and the equations for $K_n(z)$ and $\Delta_n(z)$ imply

$$\begin{cases}
\tau \in \mathbb{D} \iff s \in (\mathbb{C} \cup \{\infty\}) \setminus \Delta_n(z), \\
\tau \in \mathbb{T} \iff s \in K_n(z), \\
\tau \in \mathbb{E} \cup \{\infty\} \iff s \in \Delta_n^0(z).
\end{cases} \tag{3.6}$$

Now let $z \in \mathbb{T}$. Then we multiply (3.5) with z replaced by $v, v \in \mathbb{D}_0$, by $1 - |v|^2$ and let $v \to z$ to obtain

$$|1 - \overline{\alpha_n}z|^2 \{ |\psi_n^*(z) + s\phi_n^*(z)|^2 - |\psi_n(z) - s\phi_n(z)|^2 \} = -2(s + \overline{s}).$$
(3.7)

This yields

$$\begin{cases}
\tau \in \mathbb{D} \iff s \in \mathbb{G}, \\
\tau \in \mathbb{T} \iff s \in \mathbb{I} \cup \{\infty\}, \\
\tau \in \mathbb{E} \cup \{\infty\} \iff s \in \mathbb{H}.
\end{cases} \tag{3.8}$$

Notice that in this case $s = \infty$ gives $\phi_n(z) + \tau \phi_n^*(z) = 0$ while $|\phi_n(z)| = |\phi_n^*(z)| \neq 0$ by (2.1), and hence $\tau \in \mathbb{T}$. Recall that $w \in \mathbb{T} \setminus S$. Thus (3.8) implies that for τ and t in (3.4) we have

$$\begin{cases}
\tau \in \mathbb{D} \iff t \in \mathbb{G}, \\
\tau \in \mathbb{T} \iff t \in \mathbb{I} \cup \{\infty\}, \\
\tau \in \mathbb{E} \cup \{\infty\} \iff t \in \mathbb{H}.
\end{cases} (3.9)$$

Now let s and t be as in (3.3). If $z \in \mathbb{D}_0$, combination of (3.6) and (3.9) gives

$$\begin{cases}
t \in \mathbb{G} \iff s \in (\mathbb{C} \cup \{\infty\}) \setminus \Delta_n(z), \\
t \in \mathbb{I} \cup \{\infty\} \iff s \in K_n(z), \\
t \in \mathbb{H} \iff s \in \Delta_n^0(z).
\end{cases}$$
(3.10)

If $z \in \mathbb{T}$ we get

$$\begin{cases} t \in \mathbb{G} \iff s \in \mathbb{G}, \\ t \in \mathbb{I} \cup \{\infty\} \iff s \in \mathbb{I} \cup \{\infty\}, \\ t \in \mathbb{H} \iff s \in \mathbb{H}. \end{cases}$$

Notice hat $K_n(z) \subset \mathbb{H}$ if $z \in \mathbb{D}_0$. Therefore

$$z \mapsto s = \frac{A_n(z)t + C_n(z)}{B_n(z)t + D_n(z)}$$

maps \mathbb{D}_0 into \mathbb{H} if $t \in \mathbb{H} \cup \mathbb{I}$.

As we will establish a one-to-one correspondence between Carathéodory functions and solutions to the moment problem we consider two subsections I and II. In I we start from a Carathéodory function $h \in \mathcal{C}$ or from an infinite constant. If $h \in \mathcal{C}$ we show that there exists a unique solution ν to the moment problem with

$$F_{\nu}(z) = \frac{A(z)h(z) + C(z)}{B(z)h(z) + D(z)}.$$
(3.11)

The infinite constant corresponds to $F_{\nu}(z) = \frac{A(z)}{B(z)}$. Conversely in II we begin with a solution ν of the moment problem and we show that there is a unique $h \in \mathcal{C}$ such that (3.11) holds or $F_{\nu}(z) = \frac{A(z)}{B(z)}$. Combination of I and II will lead to our main result.

I. Let $h \in \mathcal{C}$. Put

$$F_n(z) = \frac{A_n(z)h(z) + C_n(z)}{B_n(z)h(z) + D_n(z)}$$

for $z \in \mathbb{D}_0$. Then F_n maps \mathbb{D}_0 into \mathbb{H} . If we multiply numerator and denominator of F_n by $(1 - \overline{w}z)\pi_{n-1}(z)$ which is non-zero in \mathbb{D} , we obtain

$$F_n(z) = \frac{(1 - \overline{w}z)a_n(z)h(z) + c_n(z)}{b_n(z)h(z) + (1 - \overline{w}z)d_n(z)}.$$

So F_n is a quotient of analytic functions in \mathbb{D} and hence F_n is meromorphic in \mathbb{D} . Since \mathbb{D}_0 is dense in \mathbb{D} and $F_n(\mathbb{D}_0)$ is contained in the half-plane $\mathbb{H} \cup \mathbb{I}$, F_n must be analytic in \mathbb{D} . Therefore $F_n \in \mathcal{C}$.

Hence by the Riesz-Herglotz representation theorem for Carathéodory functions there is a positive Borel measure ν_n on $[-\pi,\pi)$ and a real constant c_n such that

$$F_n(z) = ic_n + \int_{-\pi}^{\pi} \frac{t+z}{t-z} d\nu_n(\theta), \quad (t = e^{i\theta}).$$

See [1] or [5]. On the other hand we have

$$F_n(z) = R_n(z, \tau_n(h(z)))$$

and in particular

$$F_n(0) = R_n(0, \tau_n(h(0))) = \frac{\psi_n(0) - \tau_n(h(0))\psi_n^*(0)}{\phi_n(0) + \tau_n(h(0))\phi_n^*(0)}.$$

By orthogonality of the ϕ_n it follows from the definition of ψ_n and from (2.2) that

$$\psi_n(0) = \int_{-\pi}^{\pi} [\phi_n(0) - \phi_n(e^{i\theta})] d\mu(\theta) = \phi_n(0)$$

and

$$\psi_n^*(0) = \int_{-\pi}^{\pi} \left[\frac{\mathbb{B}_n(0)}{\mathbb{B}_n(e^{i\theta})} \phi_n^*(e^{i\theta}) - \phi_n^*(0) \right] d\mu(\theta) = -\phi_n^*(0)$$

if $n \ge 1$. Hence $F_n(0) = 1$ if $n \ge 1$ and from the representation of F_n we get $c_n = \Im F_n(0) = 0$ and $\nu_n([-\pi, \pi)) = F_n(0) = 1$. Hence

$$F_n(z) = \int_{-\pi}^{\pi} \frac{t+z}{t-z} d\nu_n(\theta) = F_{\nu_n}(z),$$

which is the Riesz-Herglotz transform of the measure ν_n .

For every $\tau = \tau_n(t) \in \mathbb{T}$ there is a measure $\mu_n = \mu_n(\cdot, \tau_n(t))$ such that $F_{\mu_n}(z) = R_n(z, \tau_n(t))$ which solves the truncated moment problem in \mathcal{L}_{n-1} . As $\tau_n(t) \in \mathbb{T}$ if and only if $t \in \mathbb{I} \cup \{\infty\}$, we may take $t = \infty$ to obtain the measure $\mu_n^{(0)} = \mu_n(\cdot, \tau(\infty))$ solving the truncated moment problem in \mathcal{L}_{n-1} and such that

$$F_{\mu_n^{(0)}}(z) = R_n(z, \tau_n(\infty)) = \frac{A_n(z)}{B_n(z)}.$$

We will use the measure $\mu_n^{(0)}$ to show that under a certain condition on the function h, also ν_n solves the truncated moment problem in \mathcal{L}_{n-1} . To that end we consider $F_n(z) - F_{\mu_n^{(0)}}(z)$. Using (2.3) we get after some tedious calculations

$$\begin{split} F_{n}(z) - F_{\mu_{n}^{(0)}}(z) &= \frac{A_{n}(z)h(z) + C_{n}(z)}{B_{n}(z)h(z) + D_{n}(z)} - \frac{A_{n}(z)}{B_{n}(z)} \\ &= -\frac{A_{n}(z)D_{n}(z) - B_{n}(z)C_{n}(z)}{B_{n}(z)[B_{n}(z)h(z) + D_{n}(z)]} \\ &= 4\frac{w\overline{\mathbb{B}_{n}(w)}z\mathbb{B}_{n}(z)(w - \alpha_{n})(1 - \overline{\alpha_{n}}z)}{(1 - \overline{\alpha_{n}}w)(z - \alpha_{n})(w - z)^{2}B_{n}(z)[B_{n}(z)h(z) + D_{n}(z)]} \end{split}$$

$$= 4 \frac{w \overline{\mathbb{B}_{n}(w)} z \mathbb{B}_{n}(z) (w - \alpha_{n}) (1 - \overline{\alpha_{n}} z)}{(1 - \overline{\alpha_{n}} w) (z - \alpha_{n}) (w - z)^{2} \frac{b_{n}(z)}{(1 - \overline{w}z) \pi_{n-1}(z)} \left[\frac{b_{n}(z)}{(1 - \overline{w}z) \pi_{n-1}(z)} h(z) + \frac{d_{n}(z)}{\pi_{n-1}(z)} \right]}$$

$$= 4 \overline{\mathbb{B}_{n-1}(w)} \frac{z \mathbb{B}_{n-1}(z) (\pi_{n-1}(z))^{2}}{b_{n}(z) [w b_{n}(z) h(z) + (w - z) d_{n}(z)]}.$$

Hence

$$F_n(z) - F_{\mu_n^{(0)}}(z) = z \mathbb{B}_{n-1}(z) J_{n-1}(z)$$
(3.12)

where J_{n-1} is a rational function and $F_n(z) - F_{\mu_n^{(0)}}(z)$ is analytic in \mathbb{D} .

Now we assume that the function h satisfies

$$wb_n(\alpha_k)h(\alpha_k) + (w - \alpha_k)d_n(\alpha_k) \neq 0 \quad \text{for} \quad k = 0, 1, \dots, n - 1.$$
 (3.13)

Remember that $\alpha_0 = 0$. Since the numerator $\overline{\psi_n(w)}\phi_n(z) - \overline{\psi_n^*(w)}\phi_n^*(z)$ of $B_n(z)$ is paraorthogonal, it has its zeros in \mathbb{T} . See [4]. Notice that $|\psi_n(w)| = |\psi_n^*(w)| \neq 0$ for $w \in \mathbb{T}$. Hence $b_n(z) \neq 0$ for $z \in \mathbb{D}$. Therefore the assumption (3.13) implies that J_{n-1} will not have poles at the points $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$. But then

$$J_{n-1}(z) = \frac{F_n(z) - F_{\mu_n^{(0)}}(z)}{z \mathbb{B}_{n-1}(z)}$$

is analytic in \mathbb{D} . Since $F_n = F_{\nu_n}$ it follows from (3.12) and Proposition 2.1 that ν_n and $\mu_n^{(0)}$ induce the same inner product on \mathcal{L}_{n-1} . Thus under the condition (3.13) also ν_n is a solution to the truncated moment problem in \mathcal{L}_{n-1} .

Suppose now that h is an arbitrary Carathéodory function. Then we take $\gamma_n \in \mathbb{R}$, $\gamma_n > 0$ with $\gamma_n \to 0$ as $n \to \infty$ such that (3.13) is satisfied for all n if h is replaced by $h_n(z) = h(z) + \gamma_n$. It is clear that $h_n \in \mathcal{C}$ and that $h_n \to h$ as $n \to \infty$. By the foregoing for each n there exists a solution ν_n of the truncated moment problem in \mathcal{L}_{n-1} such that

$$F_{\nu_n}(z) = \frac{A_n(z)h_n(z) + C_n(z)}{B_n(z)h_n(z) + D_n(z)}.$$

By the argument given in [4], applying Helly's theorems on the non-decreasing functions $\theta \mapsto \nu_n([-\pi,\theta))$, we obtain a subsequence $\{\nu_{n_k}\}_{k=1}^{\infty}$ of $\{\nu_n\}_{n=1}^{\infty}$ such that $\nu=\lim_{k\to\infty}\nu_{n_k}$ is a solution to the (full) moment problem and $F_{\nu_{n_k}}(z)$ converges to $F_{\nu}(z)$. On the other hand

$$F_{\nu_{n_k}}(z) = \frac{A_{n_k}(z)h_{n_k}(z) + C_{n_k}(z)}{B_{n_k}(z)h_{n_k}(z) + D_{n_k}(z)} \to \frac{A(z)h(z) + C(z)}{B(z)h(z) + D(z)} \quad \text{as} \quad k \to \infty,$$

for all $z \in \mathbb{D}_0$. Hence for each $h \in \mathcal{C}$ there is a solution ν to the moment problem such that (3.11) is satisfied. Obviously ν is unique.

If $h \equiv \infty$ we apply Helly's theorems on the measures $\mu_n^{(0)}$ and we get a subsequence $\{\mu_{n_k}^{(0)}\}_{k=1}^{\infty}$ converging to a positive Borel measure ν satisfying $F_{\nu}(z) = \frac{A(z)}{B(z)}$ for $z \in \mathbb{D}_0$.

II. Assume that ν is a solution to the moment problem. For $z \in \mathbb{D}_0$ define $h_n(z)$ by

$$F_{\nu}(z) = \frac{A_n(z)h_n(z) + C_n(z)}{B_n(z)h_n(z) + D_n(z)},$$

i.e.

$$h_n(z) = -\frac{D_n(z)F_{\nu}(z) - C_n(z)}{B_n(z)F_{\nu}(z) - A_n(z)} = -\frac{(1 - \overline{w}z)d_n(z)F_{\nu}(z) - c_n(z)}{b_n(z)F_{\nu}(z) - (1 - \overline{w}z)a_n(z)}.$$

Since F_{ν} is analytic in \mathbb{D} and a_n , b_n , c_n , d_n are polynomials, h_n may be considered to be meromorphic in \mathbb{D} . From (3.10) and the fact that $F_{\nu}(z) \in \Delta_n(z)$ if $z \in \mathbb{D}_0$, see [4], we conclude that $h_n(z) \in \mathbb{I} \cup \{\infty\} \cup \mathbb{H}$ if $z \in \mathbb{D}_0$. As \mathbb{D}_0 is dense in \mathbb{D} it follows that h_n is analytic in \mathbb{D} and that $h_n(\mathbb{D}) \subset \mathbb{I} \cup \mathbb{H}$. Hence $h_n \in \mathcal{C}$.

Clearly $h_n(z)$ converges to

$$h(z) = -\frac{D(z)F_{\nu}(z) - C(z)}{B(z)F_{\nu}(z) - A(z)}$$

in \mathbb{D}_0 as $n \to \infty$, where A, B, C, D are analytic in \mathbb{D}_0 .

Suppose that h is not an infinite constant. As $h(\mathbb{D}_0) \subset \mathbb{I} \cup \mathbb{H}$, h must be analytic in \mathbb{D}_0 , and for the same reason it follows from the Casorati-Weierstrass theorem that the singularities of h in \mathbb{D} must be removable. So h is extendable to an analytic function in \mathbb{D} which is again denoted as h. But then $h \in \mathcal{C}$. Hence given ν there is a unique $h \in \mathcal{C}$ such that

$$F_{\nu}(z) = \frac{A(z)h(z) + C(z)}{B(z)h(z) + D(z)} \quad \text{for} \quad z \in \mathbb{D}_0,$$

or $h \equiv \infty$ in which case we have $F_{\nu}(z) = \frac{A(z)}{B(z)}$ for $z \in \mathbb{D}_0$.

Combination of the results in I and II leads to

Theorem 3.1 Assume that the moment problem as defined in section 1 is indeterminate. Suppose that the set S of all accumulation points of $\{\alpha_n : n \in \mathbb{N}\}$ satisfies $S \neq \mathbb{T}$ and let A, B, C, D be the locally uniform limits in \mathbb{D}_0 of the rational functions A_n, B_n, C_n, D_n , with parameter $w \in \mathbb{T} \setminus S$. Then the formula

$$\int_{-\pi}^{\pi} \frac{t+z}{t-z} d\nu(\theta) = \frac{A(z)h(z) + C(z)}{B(z)h(z) + D(z)}, \quad (t = e^{i\theta}), \quad z \in \mathbb{D}_0,$$

establishes a one-to-one correspondence between the collection of all solutions ν to the moment problem and the collection of all Carathéodory functions h augmented by the constant ∞ .

Remark 3.2 If in Theorem 3.1 the function h is a constant in $\mathbb{I} \cup \{\infty\}$, then the measure ν is a N-extremal solution to the moment problem and every N-extremal solution is obtained in this way. See [6].

References

- [1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh and London, 1965.
- [2] A. Almendral, "Nevanlinna parametrization of the solutions to some rational moment problems", Analysis 23 (2003), 107-124.
- [3] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "Orthogonal rational functions and modified approximants", *Numerical Algorithms* 11 (1994), 57-69.
- [4] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "Orthogonal rational functions and nested disks", J. Approx. Theory 89 (3) (1997), 344-371.
- [5] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions, volume 5 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 1999.
- [6] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, "A density problem for orthogonal rational functions.", J. Comput. Appl. Math. 105 (1999), 199-212.