Compact representation of knowledge bases in inductive logic programming

Jan Struyf     Jan Ramon     Maurice Bruynooghe     Sofie Verbaeten     Hendrik Blockeel

In many applications of Inductive Logic Programming (ILP), learning occurs from a knowledge base that contains a large number of examples. Storing such a knowledge base may consume a lot of memory. Often, there is a substantial overlap of information between different examples. To reduce memory consumption, we propose a method to represent a knowledge base more compactly. We achieve this by introducing a meta-theory able to build new theories out of other (smaller) theories. In this way, the information associated with an example can be built from the information associated with one or more other examples and redundant storage of shared information is avoided. We also discuss algorithms to construct the information associated with example theories and report on a number of experiments evaluating our method in different problem domains.

Published: J. Struyf, J. Ramon, M. Bruynooghe, S. Verbaeten, en H. Blockeel, Compact representation of knowledge bases in inductive logic programming, Mach. Learn. 57 (3), pp. 305-333, December, 2004.

© Copyright 2004 by Springer-Verlag

Source: PDF, 454199 bytes


Available online at springerlink here. To request a copy from the authors, click above link.

Also available as Technical Report CW377.